Research Project A05

Pore scale formulations for evaporation, and upscaling to REV scale


Drying and evaporation in porous media is relevant for many engineering processes and for soil cultivation. These processes occur over several scales, where the evolving liquid-gas interface is important to describe the evaporation at the pore scale, while its effect lies on the REV scale. Our goal is to provide a better mathematical description of REV-scale evaporation by starting with a pore-scale description of the relevant processes and using upscaling to derive an effective model at REV scale. The effect of the evolving interface is explicitly taken into account and different approaches to describe the evolving interface at the pore scale will be investigated.

Publications in Project A05

  1. Ghosh, T., Bringedal, C., Helmig, R., & Sekhar, G. P. R. (2020). Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity. Advances in Water Resources, 145, 103716.
  2. Bringedal, C. (2020). A Conservative Phase-Field Model for Reactive Transport. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (pp. 537--545). Springer International Publishing.
  3. Bringedal, C., von Wolff, L., & Pop, I. S. (2020). Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale Modeling & Simulation, 18(2), 1076--1112.

For further information please contact

This picture showsCarina Bringedal
Jun.-Prof. Dr.

Carina Bringedal

Principal Investigator, Research Project A05

To the top of the page