Research Project A01

Fluid properties and interfacial properties in confined space from classical density functional theory and molecular simulations


Elmar Sauer (until March 2019)

Johannes Eller

The group of S. Majid Hassanizadeh and Amir Raoof are expected to continue and intensify their scientific work in the framework of SFB 1313. Research Project A01 clarifies thermodynamics phenomena of porous materials in using DFT as a well-founded diffuse interface approach with average molecular resolution. In cooperation with Research Project A02 hydrophilic and hydrophobic materials, but also changes in wettability will be studied. These aspects are also particularly relevant on the small scale and will be studied in cooperation with the group of Majid Hassanizadeh and Amir Raoof at Utrecht University. Joint investigations of free flow/porous-media flow have started.


Most porous materials involve non-uniform solid surfaces. This project applies and further develops classical density functional theory (DFT) to study how chemical and structural heterogeneities of the porous material alter adsorption isotherms, wetting behaviour, surface tensions, and contact angles. Because water is the most important fluid for porous media, this project furthermore critically analyses the DFT formalism for water. Molecular simulations are conducted for assessing and improving the DFT model for water. With these developments, the project allows meaningful predictions of interfacial properties.

Publications in Project A01

  1. Eller, J., & Gross, J. (2021). Free-Energy-Averaged Potentials for Adsorption in Heterogeneous Slit Pores Using PC-SAFT Classical Density Functional Theory. Langmuir.
  2. Stierle, R., Sauer, E., Eller, J., Theiss, M., Rehner, P., Ackermann, P., & Gross, J. (2020). Guide to efficient solution of PC-SAFT classical Density Functional Theory in various Coordinate Systems using fast Fourier and similar Transforms. Fluid Phase Equilibria, 504, 112306.
  3. Sauer, E., Terzis, A., Theiss, M., Weigand, B., & Gross, J. (2018). Prediction of Contact Angles and Density Profiles of Sessile Droplets Using Classical Density Functional Theory Based on the PCP-SAFT Equation of State. Langmuir, 34(42), 12519--12531.

For further information please contact

This picture showsJoachim Groß
Prof. Dr.-Ing.

Joachim Groß

Principal Investigator, Research Project A01

To the top of the page