Publications in scientific journals

The list of published articles and dissertations reflects the success of SFB 1313.

List of Publications within SFB 1313

  1. 2024

    1. Aricò, C., Helmig, R., Puleo, D., & Schneider, M. (2024). A new numerical mesoscopic scale one-domain approach solver for free fluid/porous medium interaction. Computer Methods in Applied Mechanics and Engineering, 419, 116655. https://doi.org/10.1016/j.cma.2023.116655
    2. Boon, W. M., Gläser, D., Helmig, R., Weishaupt, K., & Yotov, I. (2024). A mortar method for the coupled Stokes-Darcy problem using the MAC scheme for Stokes and mixed finite elements for Darcy. Computational Geosciences. https://doi.org/10.1007/s10596-023-10267-6
    3. Bringedal, C., & Jaust, A. (2024). Phase-field modeling and effective simulation of non-isothermal reactive transport. Results in Applied Mathematics, 21, 100436. https://doi.org/10.1016/j.rinam.2024.100436
    4. Bursik, B., Eller, J., & Gross, J. (2024). Predicting Solvation Free Energies from the Minnesota Solvation Database Using Classical Density Functional Theory Based on the PC-SAFT Equation of State. The Journal of Physical Chemistry B. https://doi.org/10.1021/acs.jpcb.3c07447
    5. Gao, H., Abdullah, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., Zhou, D., Liu, Q., & Sauter, M. (2024). Pore-scale study of the effects of grain size on the capillary-associated interfacial area during primary drainage. Journal of Hydrology, 632, 130865. https://doi.org/10.1016/j.jhydrol.2024.130865
    6. Hörl, M., & Rohde, C. (2024). Rigorous derivation of discrete fracture models for Darcy flow in the limit of vanishing aperture. Networks and Heterogeneous Media, 19(1), Article 1. https://doi.org/10.3934/nhm.2024006
    7. Lee, D., Ruf, M., Karadimitriou, N., Steeb, H., Manousidaki, M., Varouchakis, E. A., Tzortzakis, S., & Yiotis, A. (2024). Development of stochastically reconstructed 3D porous media micromodels using additive manufacturing: numerical and experimental validation. Scientific Reports, 14(1), Article 1. https://doi.org/10.1038/s41598-024-60075-w
    8. Mel’nyk, T. A., & Rohde, C. (2024). Asymptotic approximations for semilinear parabolic convection-dominated transport problems in thin graph-like networks. Journal of Mathematical Analysis and Applications, 529(1), Article 1. https://doi.org/10.1016/j.jmaa.2023.127587
    9. Mel’nyk, T., & Rohde, C. (2024). Puiseux asymptotic expansions for convection-dominated transport problems in thin graph-like networks: Strong boundary interactions. Asymptotic Analysis, 137(1–2), Article 1–2. https://doi.org/10.3233/asy-231876
    10. Mel’nyk, T. A., & Durante, T. (2024). Spectral problems with perturbed Steklov conditions in thick junctions with branched structure. Applicable Analysis, 1–26. https://doi.org/10.1080/00036811.2024.2322644
    11. Nordbotten, J. M., Ferno, M. A., Flemisch, B., Kovscek, A. R., & Lie, K.-A. (2024). The 11th Society of Petroleum Engineers Comparative Solution Project: Problem Definition. SPE Journal, 1–18. https://doi.org/10.2118/218015-pa
    12. Pelzer, J., & Schulte, M. (2024). Efficient two-stage modeling of heat plume interactions of geothermal heat pumps in shallow aquifers using convolutional neural networks. Geoenergy Science and Engineering, 237, 212788. https://doi.org/10.1016/j.geoen.2024.212788
    13. Shokri, J., Ruf, M., Lee, D., Mohammadrezaei, S., Steeb, H., & Niasar, V. (2024). Exploring Carbonate Rock Dissolution Dynamics and the Influence of Rock Mineralogy in CO2 Injection. Environmental Science & Technology. https://doi.org/10.1021/acs.est.3c06758
  2. 2023

    1. Ackermann, S., Fest-Santini, S., Veyskarami, M., Helmig, R., & Santini, M. (2023). Experimental validation of a coupling concept for drop formation and growth onto porous materials by high-resolution X-ray imaging technique. International Journal of Multiphase Flow, 160, 104371. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104371
    2. Boon, W. M., Gläser, D., Helmig, R., & Yotov, I. (2023). Flux-mortar mixed finite element methods with multipoint flux approximation. Computer Methods in Applied Mechanics and Engineering, 405, 115870. https://doi.org/10.1016/j.cma.2022.115870
    3. Burbulla, S., Formaggia, L., Rohde, C., & Scotti, A. (2023). Modeling fracture propagation in poro-elastic media combining phase-field and discrete fracture models. Computer Methods in Applied Mechanics and Engineering, 403, 115699. https://doi.org/10.1016/j.cma.2022.115699
    4. Burbulla, S., Hörl, M., & Rohde, C. (2023). Flow in Porous Media with Fractures of Varying Aperture. SIAM Journal on Scientific Computing, 45(4), Article 4. https://doi.org/10.1137/22M1510406
    5. Bürkner, P.-C., Kröker, I., Oladyshkin, S., & Nowak, W. (2023). A fully Bayesian sparse polynomial chaos expansion approach with joint priors on the coefficients and global selection of terms. Journal of Computational Physics, 488, 112210. https://doi.org/10.1016/j.jcp.2023.112210
    6. Dastjerdi, S. V., Karadimitriou, N., Hassanizadeh, S. M., & Steeb, H. (2023). Experimental evaluation of fluid connectivity in two-phase flow in porous media. Advances in Water Resources, 104378. https://doi.org/10.1016/j.advwatres.2023.104378
    7. Eggenweiler, E., Nickl, J., & Rybak, I. (2023). Justification of Generalized Interface Conditions for Stokes--Darcy Problems. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Eds.), Finite Volumes for Complex Applications X---Volume 1, Elliptic and Parabolic Problems (pp. 275--283). Springer Nature Switzerland.
    8. Ehlers, W. (2023). A historical review on porous-media research. PAMM. https://doi.org/10.1002/pamm.202300271
    9. Flemisch, B., Nordbotten, J. M., Fernø, M., Juanes, R., Both, J. W., Class, H., Delshad, M., Doster, F., Ennis-King, J., Franc, J., Geiger, S., Gläser, D., Green, C., Gunning, J., Hajibeygi, H., Jackson, S. J., Jammoul, M., Karra, S., Li, J., … Zhang, Z. (2023). The FluidFlower Validation Benchmark Study for the Storage of CO\$\$\_2\$\$. Transport in Porous Media. https://doi.org/10.1007/s11242-023-01977-7
    10. Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. SIAM Journal on Scientific Computing, 45(1), Article 1. https://doi.org/10.1137/21m1415005
    11. Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2023). Effect of Pore Space Stagnant Zones on Interphase Mass Transfer in Porous Media, for Two-Phase Flow Conditions. Transport in Porous Media, 146(3), Article 3. https://doi.org/10.1007/s11242-022-01879-0
    12. Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2023). Reservoir characterization by push-pull tests employing kinetic interface sensitive tracers - a pore-scale study for understanding large-scale processes. Advances in Water Resources, 174, 104424. https://doi.org/10.1016/j.advwatres.2023.104424
    13. Gravelle, S., Haber-Pohlmeier, S., Mattea, C., Stapf, S., Holm, C., & Schlaich, A. (2023). NMR Investigation of Water in Salt Crusts: Insights from Experiments and Molecular Simulations. Langmuir, 39(22), Article 22. https://doi.org/10.1021/acs.langmuir.3c00036
    14. Härter, J., Martínez, D. S., Poser, R., Weigand, B., & Lamanna, G. (2023). Coupling between a turbulent outer flow and an adjacent porous medium: High resolved Particle Image Velocimetry measurements. Physics of Fluids, 35(2), Article 2. https://doi.org/10.1063/5.0132193
    15. Karadimitriou, N., and Marios S. Valavanides, Mouravas, K., Steeb, H., & and. (2023). Flow-Dependent Relative Permeability Scaling for Steady-State Two-Phase Flow in Porous  Media: Laboratory Validation on a Microfluidic Network. Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description, 64(5), Article 5. https://doi.org/10.30632/pjv64n5-2023a4
    16. Kiemle, S., Heck, K., Coltman, E., & Helmig, R. (2023). Stable Water Isotopologue Fractionation During Soil-Water Evaporation: Analysis Using a Coupled Soil-Atmosphere Model. Water Resources Research, 59(2), Article 2. https://doi.org/10.1029/2022wr032385
    17. Kohlhaas, R., Kröker, I., Oladyshkin, S., & Nowak, W. (2023). Gaussian active learning on multi-resolution arbitrary polynomial chaos emulator: concept for bias correction, assessment of surrogate reliability and its application to the carbon dioxide benchmark. Computational Geosciences, 27(3), Article 3. https://doi.org/10.1007/s10596-023-10199-1
    18. Kröker, I., Oladyshkin, S., & Rybak, I. (2023). Global sensitivity analysis using multi-resolution polynomial chaos expansion for coupled Stokes--Darcy flow problems. Computational Geosciences. https://doi.org/10.1007/s10596-023-10236-z
    19. Lee, D., Weinhardt, F., Hommel, J., Piotrowski, J., Class, H., & Steeb, H. (2023). Machine learning assists in increasing the time resolution of X-ray computed tomography applied to mineral precipitation in porous media. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-37523-0
    20. Liu, Y., Wang, W., Yang, G., Nemati, H., & Chu, X. (2023). The interfacial modes and modal causality in a dispersed bubbly turbulent flow. Physics of Fluids, 35(8), Article 8. https://doi.org/10.1063/5.0159886
    21. Lohrmann, C., & Holm, C. (2023). Optimal motility strategies for self-propelled agents to explore porous media. Phys. Rev. E, 108(5), Article 5. https://doi.org/10.1103/PhysRevE.108.054401
    22. Lohrmann, C., & Holm, C. (2023). A novel model for biofilm initiation in porous media flow. Soft Matter, 19(36), Article 36. https://doi.org/10.1039/D3SM00575E
    23. Mohammadi, F., Eggenweiler, E., Flemisch, B., Oladyshkin, S., Rybak, I., Schneider, M., & Weishaupt, K. (2023). A surrogate-assisted uncertainty-aware Bayesian validation framework and its application to coupling free flow and porous-medium flow. Computational Geosciences. https://doi.org/10.1007/s10596-023-10228-z
    24. Mouris, K., Acuna Espinoza, E., Schwindt, S., Mohammadi, F., Haun, S., Wieprecht, S., & Oladyshkin, S. (2023). Stability criteria for Bayesian calibration of reservoir sedimentation models. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-023-01712-7
    25. Oladyshkin, S., Praditia, T., Kroeker, I., Mohammadi, F., Nowak, W., & Otte, S. (2023). The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory. Neural Networks, 166, 85--104. https://doi.org/10.1016/j.neunet.2023.06.036
    26. Ruf, M., Lee, D., & Steeb, H. (2023). A multifunctional mechanical testing stage for micro x-ray computed tomography. Review of Scientific Instruments, 94, 085115. https://doi.org/10.1063/5.0153042
    27. Schmidt, P., Steeb, H., & Renner, J. (2023). Diagnosing Hydro-Mechanical Effects in Subsurface Fluid Flow Through Fractures. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-023-03304-z
    28. Schwindt, S., Medrano, S. C., Mouris, K., Beckers, F., Haun, S., Nowak, W., Wieprecht, S., & Oladyshkin, S. (2023). Bayesian calibration points to misconceptions in three-dimensional hydrodynamic reservoir modeling. Water Resources Research. https://doi.org/10.1029/2022wr033660
    29. Sonntag, A., Wagner, A., & Ehlers, W. (2023). Dynamic hydraulic fracturing in partially saturated porous media. Computer Methods in Applied Mechanics and Engineering, 414, 116121. https://doi.org/10.1016/j.cma.2023.116121
    30. Strohbeck, P., Eggenweiler, E., & Rybak, I. (2023). A Modification of the Beavers--Joseph Condition for Arbitrary Flows to the Fluid--porous Interface. Transport in Porous Media, 147(3), Article 3. https://doi.org/10.1007/s11242-023-01919-3
    31. Strohbeck, P., Riethmüller, C., Göddeke, D., & Rybak, I. (2023). Robust and Efficient Preconditioners for Stokes--Darcy Problems. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Eds.), Finite Volumes for Complex Applications X---Volume 1, Elliptic and Parabolic Problems (pp. 375--383). Springer Nature Switzerland.
    32. Taghizadeh, K., Ruf, M., Luding, S., & Steeb, H. (2023). X-ray 3D imaging–based microunderstanding of granular mixtures: Stiffness enhancement by adding small fractions of soft particles. Proceedings of the National Academy of Sciences, 120(26), Article 26. https://doi.org/10.1073/pnas.2219999120
    33. Tatomir, A., Gao, H., Abdullah, H., Pötzl, C., Karadimitriou, N., Steeb, H., Licha, T., Class, H., Helmig, R., & Sauter, M. (2023). Estimation of Capillary-Associated NAPL-Water Interfacial Areas for Unconsolidated Porous Media by Kinetic Interface Sensitive (KIS) Tracer Method. Water Resources Research, 59(12), Article 12. https://doi.org/10.1029/2023WR035387
    34. Tobias Köppl, R. H. (2023). Dimension Reduced Modeling of Blood Flow in Large Arteries. Springer Cham. https://doi.org/10.1007/978-3-031-33087-2
    35. Trivedi, Z., Gehweiler, D., Wychowaniec, J. K., Ricken, T., Gueorguiev-Rüegg, B., Wagner, A., & Röhrle, O. (2023). Analysing the bone cement flow in the injection apparatus during vertebroplasty. PAMM, 23(1), Article 1. https://doi.org/10.1002/pamm.202200295
    36. Veyskarami, M., Michalkowski, C., Bringedal, C., & Helmig, R. (2023). Droplet Formation, Growth and Detachment at the Interface of a Coupled Free-FLow--Porous Medium System: A New Model Development and Comparison. Transport in Porous Media. https://doi.org/10.1007/s11242-023-01944-2
    37. Völter, J.-S. L., Ricken, T., & Röhrle, O. (2023). About the applicability of the theory of porous media for the modelling of non-isothermal material injection into porous structures. PAMM, 23(1), Article 1. https://doi.org/10.1002/pamm.202200070
    38. Wagner, A., Sonntag, A., Reuschen, S., Nowak, W., & Ehlers, W. (2023). Hydraulically induced fracturing in heterogeneous porous media using a TPM-phase-field model and geostatistics. PAMM, 23(1), Article 1. https://doi.org/10.1002/pamm.202200118
    39. Wieboldt, R., Lindt, K., Pohlmeier, A., Mattea, C., Stapf, S., & Haber-Pohlmeier, S. (2023). Effects of Salt Precipitation in the Topmost Soil Layer Investigated by NMR. Applied Magnetic Resonance. https://doi.org/10.1007/s00723-023-01568-1
    40. Wu, H., Veyskarami, M., Schneider, M., & Helmig, R. (2023). A New Fully Implicit Two-Phase Pore-Network Model by Utilizing Regularization Strategies. Transport in Porous Media. https://doi.org/10.1007/s11242-023-02031-2
    41. Zhuang, L., Hassanizadeh, S. M., & Qin, C.-Z. (2023). Experimental determination of in-plane permeability of nonwoven thin fibrous materials. Textile Research Journal, 93(19–20), Article 19–20. https://doi.org/10.1177/00405175231181089
  3. 2022

    1. Ahmadi, N., Muniruzzaman, M., Sprocati, R., Heck, K., Mosthaf, K., & Rolle, M. (2022). Coupling soil/atmosphere interactions and geochemical processes: A multiphase and multicomponent reactive transport approach. Advances in Water Resources, 104303. https://doi.org/10.1016/j.advwatres.2022.104303
    2. Bringedal, C. (2022). Multiscale modeling and simulation of transport processes in porous media. Universität Stuttgart. https://doi.org/10.18419/OPUS-12829
    3. Bringedal, C., Schollenberger, T., Pieters, G. J. M., van Duijn, C. J., & Helmig, R. (2022). Evaporation-Driven Density Instabilities in Saturated Porous Media. Transport in Porous Media. https://doi.org/10.1007/s11242-022-01772-w
    4. Burbulla, S., Dedner, A., Hörl, M., & Rohde, C. (2022). Dune-MMesh: The Dune Grid Module for Moving Interfaces. Journal of Open Source Software, 7(74), Article 74. https://doi.org/10.21105/joss.03959
    5. Burbulla, S., & Rohde, C. (2022). A finite-volume moving-mesh method for two-phase flow in fracturing porous media. Journal of Computational Physics, 111031. https://doi.org/10.1016/j.jcp.2022.111031
    6. Cheng, K., Lu, Z., Xiao, S., Oladyshkin, S., & Nowak, W. (2022). Mixed covariance function kriging model for uncertainty quantification. International Journal for Uncertainty Quantification, 12(3), Article 3.
    7. Eggenweiler, E., Discacciati, M., & Rybak, I. (2022). Analysis of the Stokes-Darcy problem with generalised interface conditions. ESAIM: Mathematical Modelling and Numerical Analysis, 56, 727–742. https://doi.org/10.1051/m2an/2022025
    8. Ehlers, W., Sonntag, A., & Wagner, A. (2022). On Hydraulic Fracturing in Fully and Partially Saturated Brittle Porous Material. In F. Aldakheel, B. Hudobivnik, M. Soleimani, H. Wessels, C. Weißenfels, & M. Marino (Eds.), Current Trends and Open Problems in Computational Mechanics (pp. 111--119). Springer International Publishing. https://doi.org/10.1007/978-3-030-87312-7_12
    9. Frey, S. (2022). Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections. Computer Graphics Forum, 41(3), Article 3. https://doi.org/10.1111/cgf.14537
    10. Gander, M. J., Lunowa, S. B., & Rohde, C. (2022). Consistent and Asymptotic-Preserving Finite-Volume Robin Transmission Conditions for Singularly Perturbed Elliptic Equations. In S. C. Brenner, E. Chung, A. Klawonn, F. Kwok, J. Xu, & J. Zou (Eds.), Domain Decomposition Methods in Science and Engineering XXVI (pp. 443--450). Springer International Publishing. https://doi.org/10.1007/978-3-030-95025-5_47
    11. Gonzalez-Nicolas, A., Bilgic, D., Kröker, I., Mayar, A., Trevisan, L., Steeb, H., Wieprecht, S., & Nowak, W. (2022). Optimal Exposure Time in Gamma-Ray Attenuation Experiments for Monitoring Time-Dependent Densities. Transport in Porous Media. https://doi.org/10.1007/s11242-022-01777-5
    12. Gravelle, S., Beyer, D., Brito, M., Schlaich, A., & Holm, C. (2022). Reconstruction of NMR Relaxation Rates from Coarse-Grained Polymer Simulations. https://doi.org/10.26434/chemrxiv-2022-f90tv-v2
    13. Gravelle, S., Holm, C., & Schlaich, A. (2022). Transport of thin water films: from thermally activated random walks to hydrodynamics. The Journal of Chemical Physics. https://doi.org/10.1063/5.0099646
    14. Hommel, J., Gehring, L., Weinhardt, F., Ruf, M., & Steeb, H. (2022). Effects of Enzymatically Induced Carbonate Precipitation on Capillary Pressure–Saturation Relations. Minerals, 12(10), Article 10. https://doi.org/10.3390/min12101186
    15. Kloker, L. H., & Bringedal, C. (2022). Solution approaches for evaporation-driven density instabilities in a slab of saturated porous media. Physics of Fluids, 34(9), Article 9. https://doi.org/10.1063/5.0110129
    16. Koch, T. (2022). Projection-based resolved interface 1D-3D mixed-dimension method for embedded tubular network systems. Computers & Mathematics with Applications, 109, 15--29. https://doi.org/10.1016/j.camwa.2022.01.021
    17. Kröker, I., & Oladyshkin, S. (2022). Arbitrary multi-resolution multi-wavelet-based polynomial chaos expansion for data-driven uncertainty quantification. Reliability Engineering &amp$\mathsemicolon$ System Safety, 108376. https://doi.org/10.1016/j.ress.2022.108376
    18. Kurzeja, P., & Steeb, H. (2022). Acoustic waves in saturated porous media with gas bubbles. Philosophical Transactions of the Royal Society. https://doi.org/10.1098/rsta.2021.0370
    19. Lee, D., Karadimitriou, N., Ruf, M., & Steeb, H. (2022). Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods. Solid Earth, 13(9), Article 9. https://doi.org/10.5194/se-13-1475-2022
    20. Lunowa, S. B., Mascini, A., Bringedal, C., Bultreys, T., Cnudde, V., & Pop, I. S. (2022). Dynamic Effects during the Capillary Rise of Fluids in Cylindrical Tubes. Langmuir, 38(5), Article 5. https://doi.org/10.1021/acs.langmuir.1c02680
    21. Michalkowski, C., Veyskarami, M., Bringedal, C., Helmig, R., & Schleper, V. (2022). Two-phase Flow Dynamics at the Interface Between GDL and Gas Distributor Channel Using a Pore-Network Model. Transport in Porous Media. https://doi.org/10.1007/s11242-022-01813-4
    22. Michalkowski, C., Weishaupt, K., Schleper, V., & Helmig, R. (2022). Modeling of Two Phase Flow in a Hydrophobic Porous Medium Interacting with a Hydrophilic Structure. Transport in Porous Media. https://doi.org/10.1007/s11242-022-01816-1
    23. Schmidt, F., Krüger, M., Keip, M.-A., & Hesch, C. (2022). Computational homogenization of higher-order continua. International Journal for Numerical Methods in Engineering, n/a(n/a), Article n/a. https://doi.org/10.1002/nme.6948
    24. Schmidt, P., Jaust, A., Steeb, H., & Schulte, M. (2022). Simulation of flow in deformable fractures using a quasi-Newton based partitioned coupling approach. Computational Geosciences. https://doi.org/10.1007/s10596-021-10120-8
    25. Scholz, L., & Bringedal, C. (2022). A Three-Dimensional Homogenization Approach for Effective Heat Transport in Thin Porous Media. Transport in Porous Media. https://doi.org/10.1007/s11242-022-01746-y
    26. Seus, D., Radu, F. A., & Rohde, C. (2022). Towards hybrid two-phase modelling using linear domain decomposition. Numerical Methods for Partial Differential Equations. https://doi.org/10.1002/num.22906
    27. Sharmin, S., Bastidas, M., Bringedal, C., & Pop, I. S. (2022). Upscaling a Navier-Stokes-Cahn-Hilliard model for two-phase porous-media flow with solute-dependent surface tension effects. Applicable Analysis, 0(0), Article 0. https://doi.org/10.1080/00036811.2022.2052858
    28. Straub, A., Boblest, S., Karch, G. K., Sadlo, F., & Ertl, T. (2022). Droplet-Local Line Integration for Multiphase Flow. 2022 IEEE Visualization and Visual Analytics (VIS), 135–139. https://doi.org/10.1109/VIS54862.2022.00036
    29. Swamynathan, S., Jobst, S., Kienle, D., & Keip, M.-A. (2022). Phase-field modeling of fracture in strain-hardening elastomers: Variational formulation, multiaxial experiments and validation. Engineering Fracture Mechanics, 108303. https://doi.org/10.1016/j.engfracmech.2022.108303
    30. Trivedi, Z., Gehweiler, D., Wychowaniec, J. K., Ricken, T., Gueorguiev-Rüegg, B., Wagner, A., & Röhrle, O. (2022). A continuum mechanical porous media model for vertebroplasty: Numerical simulations and experimental validation. https://doi.org/10.48550/arXiv.2209.14654
    31. Valavanides, M. S., Karadimitriou, N., & Steeb, H. (2022). Flow Dependent Relative Permeability Scaling for Steady-State Two-Phase Flow in Porous Media: Laboratory Validation on a Microfluidic Network. In SPWLA Annual Logging Symposium: Vol. Day 5 Wed, June 15, 2022. https://doi.org/10.30632/SPWLA-2022-0054
    32. van Westen, T., Hammer, M., Hafskjold, B., Aasen, A., Gross, J., & Wilhelmsen, Ø. (2022). Perturbation theories for fluids with short-ranged attractive forces: A case study of the Lennard-Jones spline fluid. The Journal of Chemical Physics, 156(10), Article 10. https://doi.org/10.1063/5.0082690
    33. von Wolff, L., & Pop, I. S. (2022). Upscaling of a Cahn–Hilliard Navier–Stokes model with precipitation and dissolution in a thin strip. Journal of Fluid Mechanics, 941, A49--. https://doi.org/DOI: 10.1017/jfm.2022.308
    34. Walczak, M. S., Erfani, H., Karadimitriou, N. K., Zarikos, I., Hassanizadeh, S. M., & Niasar, V. (2022). Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counter-Current Transport and Non-Linear Diffusion. Water Resources Research, 58(6), Article 6. https://doi.org/10.1029/2021wr030426
    35. Wang, W., Lozano-Durán, A., Helmig, R., & Chu, X. (2022). Spatial and spectral characteristics of information flux between turbulent boundary layers and porous media. Journal of Fluid Mechanics, 949, A16--. https://doi.org/DOI: 10.1017/jfm.2022.770
    36. Weinhardt, F., Deng, J., Hommel, J., Vahid Dastjerdi, S., Gerlach, R., Steeb, H., & Class, H. (2022). Spatiotemporal Distribution of Precipitates and Mineral Phase Transition During Biomineralization Affect Porosity–Permeability Relationships. Transport in Porous Media. https://doi.org/10.1007/s11242-022-01782-8
    37. Zech, A., & de Winter, M. (2022). A Probabilistic Formulation of the Diffusion Coefficient in Porous Media as Function of Porosity. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01737-5
  4. 2021

    1. Ackermann, S., Bringedal, C., & Helmig, R. (2021). Multi-scale three-domain approach for coupling free flow and flow in porous media including droplet-related interface processes. Journal of Computational Physics, 429, 109993. https://doi.org/10.1016/j.jcp.2020.109993
    2. Ahmadi, N., Heck, K., Rolle, M., Helmig, R., & Mosthaf, K. (2021). On multicomponent gas diffusion and coupling concepts for porous media and free flow: a benchmark study. Computational Geosciences. https://doi.org/10.1007/s10596-021-10057-y
    3. Balcewicz, M., Siegert, M., Gurris, M., Ruf, M., Krach, D., Steeb, H., & Saenger, E. H. (2021). Digital rock physics: A geological driven workflow for the segmentation of anisotropic Ruhr sandstone. Front. Earth Sci., 9, 673753.
    4. Berre, I., Boon, W. M., Flemisch, B., Fumagalli, A., Gläser, D., Keilegavlen, E., Scotti, A., Stefansson, I., Tatomir, A., Brenner, K., Burbulla, S., Devloo, P., Duran, O., Favino, M., Hennicker, J., Lee, I.-H., Lipnikov, K., Masson, R., Mosthaf, K., … Zulian, P. (2021). Verification benchmarks for single-phase flow in three-dimensional fractured porous media. Advances in Water Resources, 147, 103759. https://doi.org/10.1016/j.advwatres.2020.103759
    5. Chu, X., Müller, J., & Weigand, B. (2021). Interface-Resolved Direct Numerical Simulation of Turbulent Flow over Porous Media. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’19 (pp. 343--354). Springer International Publishing.
    6. Chu, X., Wang, W., Müller, J., Von Schöning, H., Liu, Y., & Weigand, B. (2021). Turbulence Modulation and Energy Transfer in Turbulent Channel Flow Coupled with One-Side Porous Media. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’20 (pp. 373--386). Springer International Publishing.
    7. Class, H., Bürkle, P., Sauerborn, T., Trötschler, O., Strauch, B., & Zimmer, M. (2021). On the role of density-driven dissolution of CO2 in phreatic karst systems. Water Resources Research, n/a(n/a), Article n/a. https://doi.org/10.1029/2021WR030912
    8. Eggenweiler, E., & Rybak, I. (2021). Effective coupling conditions for arbitrary flows in Stokes-Darcy systems. Multiscale Modeling and Simulation, 19(2), Article 2. https://doi.org/10.1137/20M1346638
    9. Eller, J., & Gross, J. (2021). Free-Energy-Averaged Potentials for Adsorption in Heterogeneous Slit Pores Using PC-SAFT Classical Density Functional Theory. Langmuir. https://doi.org/10.1021/acs.langmuir.0c03287
    10. Eller, J., Matzerath, T., van Westen, T., & Gross, J. (2021). Predicting solvation free energies in non-polar solvents using classical density functional theory based on the PC-SAFT equation of state. The Journal of Chemical Physics, 154(24), Article 24. https://doi.org/10.1063/5.0051201
    11. Erfani, H., Karadimitriou, N., Nissan, A., Walczak, M. S., An, S., Berkowitz, B., & Niasar, V. (2021). Process-Dependent Solute Transport in Porous Media. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01655-6
    12. Frey, S., Scheller, S., Karadimitriou, N., Lee, D., Reina, G., Steeb, H., & Ertl, T. (2021). Visual Analysis of Two-Phase Flow Displacement Processes in Porous Media. Computer Graphics Forum, n/a(n/a), Article n/a. https://doi.org/10.1111/cgf.14432
    13. Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2021). Effects of surface roughness on the kinetic interface-sensitive tracer transport during drainage processes. Advances in Water Resources, 104044. https://doi.org/10.1016/j.advwatres.2021.104044
    14. Gläser, D., Schneider, M., Flemisch, B., & Helmig, R. (2021). Comparison of cell- and vertex-centered finite-volume schemes for flow in fractured porous media. Journal of Computational Physics, 110715. https://doi.org/10.1016/j.jcp.2021.110715
    15. Haide, R., Fest-Santini, S., & Santini, M. (2021). Use of X-ray micro-computed tomography for the investigation of drying processes in porous media: A review. Drying Technology, 1--14. https://doi.org/10.1080/07373937.2021.1876723
    16. Kessler, C., Eller, J., Gross, J., & Hansen, N. (2021). Adsorption of light gases in covalent organic frameworks: comparison of classical density functional theory and grand canonical Monte Carlo simulations. Microporous and Mesoporous Materials, 111263. https://doi.org/10.1016/j.micromeso.2021.111263
    17. Koch, T., Weishaupt, K., Müller, J., Weigand, B., & Helmig, R. (2021). A (Dual) Network Model for Heat Transfer in Porous Media. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01602-5
    18. Koch, T., Wu, H., & Schneider, M. (2021). Nonlinear mixed-dimension model for embedded tubular networks with application to root water uptake. Journal of Computational Physics, 110823. https://doi.org/10.1016/j.jcp.2021.110823
    19. Lee, M., Lohrmann, C., Szuttor, K., Auradou, H., & Holm, C. (2021). The influence of motility on bacterial accumulation in a microporous channel. Soft Matter. https://doi.org/10.1039/D0SM01595D
    20. Lunowa, S. B., Bringedal, C., & Pop, I. S. (2021). On an averaged model for immiscible two-phase flow with surface tension and dynamic contact angle in a thin strip. Studies in Applied Mathematics, n/a(n/a), Article n/a. https://doi.org/10.1111/sapm.12376
    21. Olivares, M. B., Bringedal, C., & Pop, I. S. (2021). A two-scale iterative scheme for a phase-field model for precipitation and dissolution in porous media. Applied Mathematics and Computation, 396, 125933. https://doi.org/10.1016/j.amc.2020.125933
    22. Polukhov, E., & Keip, M.-A. (2021). On the Computational Homogenization of Deformation–Diffusion Processes. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000293
    23. Reuschen, S., Jobst, F., & Nowak, W. (2021). Efficient discretization-independent Bayesian inversion of high-dimensional multi-Gaussian priors using a hybrid MCMC. Water Resources Research. https://doi.org/10.1029/2021wr030051
    24. Reuschen, S., Nowak, W., & Guthke, A. (2021). The Four Ways to Consider Measurement Noise in Bayesian Model Selection—And Which One to Choose. Water Resources Research, 57(11), Article 11. https://doi.org/10.1029/2021WR030391
    25. Rodenberg, B., Desai, I., Hertrich, R., Jaust, A., & Uekermann, B. (2021). FEniCS–preCICE: Coupling FEniCS to other simulation software. SoftwareX, 16, 100807. https://doi.org/10.1016/j.softx.2021.100807
    26. Rybak, I., Schwarzmeier, C., Eggenweiler, E., & Rüde, U. (2021). Validation and calibration of coupled porous-medium and  free-flow problems using pore-scale resolved models. Comput. Geosci., 25, 621--63. https://doi.org/10.1007/s10596-020-09994-x
    27. Scheurer, S., Schäfer Rodrigues Silva, A., Mohammadi, F., Hommel, J., Oladyshkin, S., Flemisch, B., & Nowak, W. (2021). Surrogate-based Bayesian comparison of computationally expensive models: application to microbially induced calcite precipitation. Computational Geosciences, 25(6), Article 6. https://doi.org/10.1007/s10596-021-10076-9
    28. Schlaich, A., Jin, D., Bocquet, L., & Coasne, B. (2021). Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces. Nature Materials. https://doi.org/10.1038/s41563-021-01121-0
    29. Seitz, G., Mohammadi, F., & Class, H. (2021). Thermochemical Heat Storage in a Lab-Scale Indirectly Operated CaO/Ca(OH)2 Reactor—Numerical Modeling and Model Validation through Inverse Parameter Estimation. Applied Sciences, 11(2), Article 2. https://doi.org/10.3390/app11020682
    30. Seyedpour, S. M., Valizadeh, I., Kirmizakis, P., Doherty, R., & Ricken, T. (2021). Optimization of the Groundwater Remediation Process Using a Coupled Genetic Algorithm-Finite Difference Method. Water, 13(3), Article 3. https://doi.org/10.3390/w13030383
    31. Sonntag, A., Wagner, A., & Ehlers, W. (2021). Modelling fluid-driven fractures for partially saturated porous materials. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000033
    32. Stierle, R., & Gross, J. (2021). Hydrodynamic density functional theory for mixtures from a variational principle and its application to droplet coalescence. The Journal of Chemical Physics, 155(13), Article 13. https://doi.org/10.1063/5.0060088
    33. Trivedi, Z., Bleiler, C., Gehweiler, D., Gueorguiev-Rüegg, B., Ricken, T., Wagner, A., & Röhrle, O. (2021). Simulating vertebroplasty: A biomechanical challenge. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000313
    34. von Wolff, L., Weinhardt, F., Class, H., Hommel, J., & Rohde, C. (2021). Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01560-y
    35. Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media, 138, 1–23. https://doi.org/10.1007/s11242-021-01586-2
    36. Wang, W. (王文康), Yang, G. (杨光), Evrim, C., Terzis, A., Helmig, R., & Chu, X. (初旭). (2021). An assessment of turbulence transportation near regular and random permeable interfaces. Physics of Fluids, 33(11), Article 11. https://doi.org/10.1063/5.0069311
    37. Weinhardt, F., Class, H., Dastjerdi, S. V., Karadimitriou, N., Lee, D., & Steeb, H. (2021). Experimental Methods and Imaging for Enzymatically Induced Calcite Precipitation in a Microfluidic Cell. Water Resources Research, 57(3), Article 3. https://doi.org/10.1029/2020wr029361
    38. Weishaupt, K., & Helmig, R. (2021). A dynamic and fully implicit non-isothermal, two-phase, two-component pore-network model coupled to single-phase free flow for the pore-scale description of evaporation processes. Water Resources Research. https://doi.org/10.1029/2020wr028772
    39. Xiao, S., Xu, T., Reuschen, S., Nowak, W., & Hendricks Franssen, H.-J. (2021). Bayesian Inversion of Multi-Gaussian Log-Conductivity Fields With Uncertain Hyperparameters: An Extension of Preconditioned Crank-Nicolson Markov Chain Monte Carlo With Parallel Tempering. Water Resources Research, 57(9), Article 9. https://doi.org/10.1029/2021WR030313
    40. Yiotis, A., Karadimitriou, N. K., Zarikos, I., & Steeb, H. (2021). Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-83065-8
  5. 2020

    1. Agélas, L., Schneider, M., Enchéry, G., & Flemisch, B. (2020). Convergence of nonlinear finite volume schemes for two-phase porous media flow on general meshes. IMA Journal of Numerical Analysis. https://doi.org/10.1093/imanum/draa064
    2. Bahlmann, L. M., Smits, K., Heck, K., Coltman, E., Helmig, R., & Neuweiler, I. (2020). Gas Component Transport across the Soil-Atmosphere-Interface for Gases of Different Density: Experiments and Modeling. Water Resources Research. https://doi.org/10.1029/2020wr027600
    3. Boon, W. M., & Nordbotten, J. M. (2020). Stable mixed finite elements for linear elasticity with thin inclusions. Computational Geosciences. https://doi.org/10.1007/s10596-020-10013-2
    4. Boon, W. M. (2020). A parameter-robust iterative method for Stokes–Darcy problems retaining local mass conservation. ESAIM: Mathematical Modelling and Numerical Analysis, 54(6), Article 6. https://doi.org/10.1051/m2an/2020035
    5. Breitsprecher, K., Janssen, M., Srimuk, P., Mehdi, B. L., Presser, V., Holm, C., & Kondrat, S. (2020). How to speed up ion transport in nanopores. Nature Communications, 11(1), Article 1. https://doi.org/10.1038/s41467-020-19903-6
    6. Bringedal, C. (2020). A Conservative Phase-Field Model for Reactive Transport. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (pp. 537--545). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_50
    7. Bringedal, C., von Wolff, L., & Pop, I. S. (2020). Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale Modeling & Simulation, 18(2), Article 2. https://doi.org/10.1137/19m1239003
    8. Budisa, A., Boon, W. M., & Hu, X. (2020). Mixed-Dimensional Auxiliary Space Preconditioners. SIAM Journal on Scientific Computing, 42(5), Article 5. https://doi.org/10.1137/19m1292618
    9. Burbulla, S., & Rohde, C. (2020). A Fully Conforming Finite Volume Approach to Two-Phase Flow in Fractured Porous Media. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (pp. 547--555). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3
    10. Chu, X., Wang, W., Yang, G., Terzis, A., Helmig, R., & Weigand, B. (2020). Transport of Turbulence Across Permeable Interface in a Turbulent Channel Flow: Interface-Resolved Direct Numerical Simulation. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01506-w
    11. Chu, X., Wu, Y., Rist, U., & Weigand, B. (2020). Instability and transition in an elementary porous medium. Phys. Rev. Fluids, 5(4), Article 4. https://doi.org/10.1103/PhysRevFluids.5.044304
    12. Coltman, E., Lipp, M., Vescovini, A., & Helmig, R. (2020). Obstacles, Interfacial Forms, and Turbulence: A Numerical Analysis of Soil--Water Evaporation Across Different Interfaces. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01445-6
    13. de Winter, D. A. M., Weishaupt, K., Scheller, S., Frey, S., Raoof, A., Hassanizadeh, S. M., & Helmig, R. (2020). The Complexity of Porous Media Flow Characterized in a Microfluidic Model Based on Confocal Laser Scanning Microscopy and Micro-PIV. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01515-9
    14. Eggenweiler, E., & Rybak, I. (2020). Interface Conditions for Arbitrary Flows in Coupled Porous-Medium and Free-Flow Systems. In R. Klöfkorn, E. Keilegavlen, F. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods,Theoretical Aspects, Examples (Vol. 323, pp. 345--353). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_31
    15. Eggenweiler, E., & Rybak, I. (2020). Unsuitability of the Beavers–Joseph interface condition for filtration problems. Journal of Fluid Mechanics, 892, A10. https://doi.org/DOI: 10.1017/jfm.2020.194
    16. Emmert, S., Class, H., Davis, K. J., & Gerlach, R. (2020). Importance of specific substrate utilization by microbes in microbially enhanced coal-bed methane production: A modelling study. International Journal of Coal Geology, 229, 103567. https://doi.org/10.1016/j.coal.2020.103567
    17. Emmert, S., Davis, K., Gerlach, R., & Class, H. (2020). The Role of Retardation, Attachment and Detachment Processes during Microbial Coal-Bed Methane Production after Organic Amendment. Water, 12(11), Article 11. https://doi.org/10.3390/w12113008
    18. Frey, S. (2020). Temporally Dense Exploration of Moving and Deforming Shapes. Computer Graphics Forum, 40(1), Article 1. https://doi.org/10.1111/cgf.14092
    19. Ghosh, T., Bringedal, C., Helmig, R., & Sekhar, G. P. R. (2020). Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity. Advances in Water Resources, 145, 103716. https://doi.org/10.1016/j.advwatres.2020.103716
    20. Gläser, D., Flemisch, B., Class, H., & Helmig, R. (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56), Article 56. https://doi.org/10.21105/joss.02291
    21. Hasan, S., Niasar, V., Karadimitriou, N. K., Godinho, J. R. A., Vo, N. T., An, S., Rabbani, A., & Steeb, H. (2020). Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2011716117
    22. Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of Radiation on Evaporation Rates: A Numerical Analysis. Water Resources Research, 56(10), Article 10. https://doi.org/10.1029/2020wr027332
    23. Hommel, J., Akyel, A., Frieling, Z., Phillips, A. J., Gerlach, R., Cunningham, A. B., & Class, H. (2020). A Numerical Model for Enzymatically Induced Calcium Carbonate Precipitation. Applied Sciences, 10(13), Article 13. https://doi.org/10.3390/app10134538
    24. Höge, M., Guthke, A., & Nowak, W. (2020). Bayesian Model Weighting: The Many Faces of Model Averaging. Water, 12(2), Article 2. https://doi.org/10.3390/w12020309
    25. Jaust, A., Weishaupt, K., Mehl, M., & Flemisch, B. (2020). Partitioned Coupling Schemes for Free-Flow and Porous-Media Applications with Sharp Interfaces. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (pp. 605--613). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_57
    26. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2020). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.02.012
    27. Koch, T., Helmig, R., & Schneider, M. (2020). A new and consistent well model for one-phase flow in anisotropic porous media using a distributed source model. Journal of Computational Physics, 410, 109369. https://doi.org/10.1016/j.jcp.2020.109369
    28. Koch, T., Schneider, M., Helmig, R., & Jenny, P. (2020). Modeling tissue perfusion in terms of 1d-3d embedded mixed-dimension coupled problems with distributed sources. Journal of Computational Physics, 410, 109370. https://doi.org/10.1016/j.jcp.2020.109370
    29. Konangi, S., Palakurthi, N. K., Karadimitriou, N. K., Comer, K., & Ghia, U. (2020). Comparison of Pore-scale Capillary Pressure to Macroscale Capillary Pressure using Direct Numerical Simulations of Drainage under Dynamic and Quasi-static Conditions. Advances in Water Resources, 103792. https://doi.org/10.1016/j.advwatres.2020.103792
    30. Lipp, M., & Helmig, R. (2020). A Locally-Refined Locally-Conservative Quadtree Finite-Volume Staggered-Grid Scheme. In G. Lamanna, S. Tonini, G. E. Cossali, & B. Weigand (Eds.), Droplet Interactions and Spray Processes (pp. 149--159). Springer International Publishing.
    31. Mitra, K., Köppl, T., Pop, I. S., van Duijn, C. J., & Helmig, R. (2020). Fronts in two-phase porous media flow problems: The effects of hysteresis and dynamic capillarity. Studies in Applied Mathematics, 144(4), Article 4. https://doi.org/10.1111/sapm.12304
    32. Müller, J., Offenhäuser, P., Reitzle, M., & Weigand, B. (2020). A Method to Reduce Load Imbalances in Simulations of Solidification Processes with Free Surface 3D. In M. M. Resch, Y. Kovalenko, W. Bez, E. Focht, & H. Kobayashi (Eds.), Sustained Simulation Performance 2018 and 2019 (pp. 163--184). Springer International Publishing.
    33. Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian3 Active Learning for the Gaussian Process Emulator Using Information Theory. Entropy, 22(8), Article 8. https://doi.org/10.3390/e22080890
    34. Piotrowski, J., Huisman, J. A., Nachshon, U., Pohlmeier, A., & Vereecken, H. (2020). Gas Permeability of Salt Crusts Formed by Evaporation from Porous Media. Geosciences, 10(11), Article 11. https://doi.org/10.3390/geosciences10110423
    35. Polukhov, E., & Keip, M.-A. (2020). Computational homogenization of transient  chemo-mechanical processes based on a variational minimization principle. Advanced Modeling and Simulation in Engineering Sciences, 7(1), Article 1. https://doi.org/10.1186/s40323-020-00161-6
    36. Poonoosamy, J., Haber-Pohlmeier, S., Deng, H., Deissmann, G., Klinkenberg, M., Gizatullin, B., Stapf, S., Brandt, F., Bosbach, D., & Pohlmeier, A. (2020). Combination of MRI and SEM to Assess Changes in the Chemical Properties and Permeability of Porous Media due to Barite Precipitation. Minerals, 10(3), Article 3. https://doi.org/10.3390/min10030226
    37. Reuschen, S., Xu, T., & Nowak, W. (2020). Bayesian inversion of hierarchical geostatistical models using a parallel-tempering sequential Gibbs MCMC. Advances in Water Resources, 141, 103614. https://doi.org/10.1016/j.advwatres.2020.103614
    38. Rohde, C., & von Wolff, L. (2020). Homogenization of Nonlocal Navier--Stokes--Korteweg Equations for Compressible Liquid-Vapor Flow in Porous Media. SIAM Journal on Mathematical Analysis, 52(6), Article 6. https://doi.org/10.1137/19m1242434
    39. Rohde, C., & von Wolff, L. (2020). A Ternary Cahn-Hilliard Navier-Stokes Model for two Phase Flow with Precipitation and Dissolution. Mathematical Models and Methods in Applied Sciences. https://doi.org/10.1142/s0218202521500019
    40. Ruf, M., & Steeb, H. (2020). An open, modular, and flexible micro X-ray computed tomography system for research. Review of Scientific Instruments, 91(11), Article 11. https://doi.org/10.1063/5.0019541
    41. Scheer, D., Class, H., & Flemisch, B. (2020). Subsurface Environmental Modelling Between Science and Policy. Springer International Publishing. https://doi.org/10.1007/978-3-030-51178-4
    42. Schneider, M., Weishaupt, K., Gläser, D., Boon, W. M., & Helmig, R. (2020). Coupling staggered-grid and MPFA finite volume methods for free flow/porous-medium flow problems. Journal of Computational Physics, 401. https://doi.org/10.1016/j.jcp.2019.109012
    43. Schneider, M., Flemisch, B., Frey, S., Hermann, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. https://doi.org/10.17192/BFDM.2020.1.8085
    44. Schout, G., Hartog, N., Hassanizadeh, S. M., Helmig, R., & Griffioen, J. (2020). Impact of groundwater flow on methane gas migration and retention in unconsolidated aquifers. Journal of Contaminant Hydrology, 230, 103619. https://doi.org/10.1016/j.jconhyd.2020.103619
    45. Schultze-Jena, A., Boon, M. A., de Winter, D. A. M., Bussmann, P. J. Th., Janssen, A. E. M., & van der Padt, A. (2020). Predicting intraparticle diffusivity as function of stationary phase characteristics in preparative chromatography. Journal of Chromatography A, 1613, 460688. https://doi.org/10.1016/j.chroma.2019.460688
    46. Sharmin, S., Bringedal, C., & Pop, I. S. (2020). On upscaling pore-scale models for two-phase flow with evolving interfaces. Advances in Water Resources, 142, 103646. https://doi.org/10.1016/j.advwatres.2020.103646
    47. Shokri-Kuehni, S. M. S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., & Shokri, N. (2020). Water Table Depth and Soil Salinization: From Pore-Scale Processes to Field-Scale Responses. Water Resources Research, 56(2), Article 2. https://doi.org/10.1029/2019wr026707
    48. Stierle, R., Sauer, E., Eller, J., Theiss, M., Rehner, P., Ackermann, P., & Gross, J. (2020). Guide to efficient solution of PC-SAFT classical Density Functional Theory in various Coordinate Systems using fast Fourier and similar Transforms. Fluid Phase Equilibria, 504, 112306. https://doi.org/10.1016/j.fluid.2019.112306
    49. van Duijn, C. J., Mikelić, A., & Wick, T. (2020). Mathematical theory and simulations of thermoporoelasticity. Computer Methods in Applied Mechanics and Engineering, 366, 113048. https://doi.org/10.1016/j.cma.2020.113048
    50. Weishaupt, K., Terzis, A., Zarikos, I., Yang, G., Flemisch, B., de Winter, D. A. M., & Helmig, R. (2020). A Hybrid-Dimensional Coupled Pore-Network/Free-Flow Model Including Pore-Scale Slip and Its Application to a Micromodel Experiment. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01477-y
    51. Xu, T., Reuschen, S., Nowak, W., & Franssen, H.-J. H. (2020). Preconditioned Crank-Nicolson Markov Chain Monte Carlo Coupled With Parallel Tempering: An Efficient Method for Bayesian Inversion of Multi-Gaussian Log-Hydraulic Conductivity Fields. Water Resources Research, 56(8), Article 8. https://doi.org/10.1029/2020wr027110
    52. Yang, G. (杨光), Chu, X. (初旭), Vaikuntanathan, V., Wang, S. (王珊珊), Wu, J. (吴静怡), Weigand, B., & Terzis, A. (2020). Droplet mobilization at the walls of a microfluidic channel. Physics of Fluids, 32(1), Article 1. https://doi.org/10.1063/1.5139308
  6. 2019

    1. Beck, M., & Class, H. (2019). Modelling fault reactivation with characteristic stress-drop terms. Advances in Geosciences, 49, 1--7. https://doi.org/10.5194/adgeo-49-1-2019
    2. Chu, X., Yang, G., Pandey, S., & Weigand, B. (2019). Direct numerical simulation of convective heat transfer in porous media. International Journal of Heat and Mass Transfer, 133, 11--20. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.172
    3. Ehlers, W., & Wagner, A. (2019). Modelling and simulation methods applied to coupled problems in porous-media mechanics. Archive of Applied Mechanics. https://doi.org/10.1007/s00419-019-01520-5
    4. Eurich, L., Shahmoradi, S., Wagner, A., Borja, R., & Ehlers, W. (2019). Simulating plant-cell dehydration using a double-porosity formulation based on the Theory of Porous Media. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900243
    5. Hasan, S. N., Joekar-Niasar, V., Karadimitriou, N., & Sahimi, M. (2019). Saturation-Dependence of Non-Fickian Transport in Porous Media. Water Resources Research. https://doi.org/10.1029/2018WR023554
    6. Karadimitriou, N. K., Mahani, H., Steeb, H., & Niasar, V. (2019). Nonmonotonic Effects of Salinity on Wettability Alteration and Two-Phase Flow Dynamics in PDMS Micromodels. Water Resources Research. https://doi.org/10.1029/2018wr024252
    7. Kienle, D., Aldakheel, F., & Keip, M.-A. (2019). A finite-strain phase-field approach to ductile failure of frictional materials. International Journal of Solids and Structures. https://doi.org/10.1016/j.ijsolstr.2019.02.006
    8. Kienle, D., & Keip, M.-A. (2019). Modeling of hydraulically induced fractures in elastic-plastic solids. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900377
    9. Köppel, M., Martin, V., Jaffré, J., & Roberts, J. E. (2019). A Lagrange multiplier method for a discrete fracture model for flow in porous media. Computational Geosciences, 23(2), Article 2. https://doi.org/10.1007/s10596-018-9779-8
    10. Lee, M., Szuttor, K., & Holm, C. (2019). A computational model for bacterial run-and-tumble motion. The Journal of Chemical Physics, 150(17), Article 17. https://doi.org/10.1063/1.5085836
    11. Oladyshkin, S., & Nowak, W. (2019). The Connection between Bayesian Inference and Information Theory for Model Selection, Information Gain and Experimental Design. Entropy, 21(11), Article 11. https://doi.org/10.3390/e21111081
    12. Steeb, H., & Renner, J. (2019). Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables. Transport in Porous Media. https://doi.org/10.1007/s11242-019-01319-6
    13. Teichtmeister, S., Mauthe, S., & Miehe, C. (2019). Aspects of finite element formulations for the coupled problem of poroelasticity based on a canonical minimization principle. Computational Mechanics. https://doi.org/10.1007/s00466-019-01677-4
    14. Terzis, A., Zarikos, I., Weishaupt, K., Yang, G., Chu, X., Helmig, R., & Weigand, B. (2019). Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow. Physics of Fluids, 31(4), Article 4. https://doi.org/10.1063/1.5092169
    15. Trivedi, Z., Bleiler, C., Wagner, A., & Röhrle, O. (2019). A parametric permeability study for a simplified vertebra based on regular microstructures. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900383
    16. Weishaupt, K., Joekar-Niasar, V., & Helmig, R. (2019). An efficient coupling of free flow and porous media flow using the pore-network modeling approach. Journal of Computational Physics: X, 1. https://doi.org/10.1016/j.jcpx.2019.100011
    17. Xiao, S., Reuschen, S., Köse, G., Oladyshkin, S., & Nowak, W. (2019). Estimation of small failure probabilities based on thermodynamic integration and parallel tempering. Mechanical Systems and Signal Processing, 133, 106248. https://doi.org/10.1016/j.ymssp.2019.106248
    18. Yang, G., Coltman, E., Weishaupt, K., Terzis, A., Helmig, R., & Weigand, B. (2019). On the Beavers--Joseph Interface Condition for Non-parallel Coupled Channel Flow over a Porous Structure at High Reynolds Numbers. Transport in Porous Media. https://doi.org/10.1007/s11242-019-01255-5
    19. Yang, G., Terzis, A., Zarikos, I., Hassanizadeh, S. M., Weigand, B., & Helmig, R. (2019). Internal flow patterns of a droplet pinned to the hydrophobic surfaces of a confined microchannel using micro-PIV and VOF simulations. Chemical Engineering Journal, 370, 444--454. https://doi.org/10.1016/j.cej.2019.03.191
    20. Yang, G., Vaikuntanathan, V., Terzis, A., Cheng, X., Weigand, B., & Helmig, R. (2019). Impact of a Linear Array of Hydrophilic and Superhydrophobic Spheres on a Deep Water Pool. Colloids Interfaces, 3(1), Article 1. https://doi.org/10.3390/colloids3010029
    21. Yin, X., Zarikos, I., Karadimitriou, N. K., Raoof, A., & Hassanizadeh, S. M. (2019). Direct simulations of two-phase flow experiments of different geometry complexities using Volume-of-Fluid (VOF) method. Chemical Engineering Science, 195, 820--827. https://doi.org/10.1016/j.ces.2018.10.029
  7. 2018

    1. Chu, X., Weigand, B., & Vaikuntanathan, V. (2018). Flow turbulence topology in regular porous media: From macroscopic to microscopic scale with direct numerical simulation. Physics of Fluids, 30(6), Article 6. https://doi.org/10.1063/1.5030651
    2. Cunningham, A. B., Class, H., Ebigbo, A., Gerlach, R., Phillips, A. J., & Hommel, J. (2018). Field-scale modeling of microbially induced calcite precipitation. Computational Geosciences. https://doi.org/10.1007/s10596-018-9797-6
    3. Frey, S. (2018). Spatio-Temporal Contours from Deep Volume Raycasting. Computer Graphics Forum, 37(3), Article 3. https://doi.org/10.1111/cgf.13438
    4. Gralka, P., Grottel, S., Staib, J., Schatz, K., Karch, G. K., Hirschler, M., Krone, M., Reina, G., Gumhold, S., & Ertl, T. (2018). 2016 IEEE Scientific Visualization Contest Winner: Visual and Structural Analysis of Point-based Simulation Ensembles. IEEE Computer Graphics and Applications, 38(3), Article 3. https://doi.org/10.1109/MCG.2017.3301120
    5. Hommel, J., Coltman, E., & Class, H. (2018). Porosity--Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)geochemically Altered Porous Media. Transport in Porous Media, 124(2), Article 2. https://doi.org/10.1007/s11242-018-1086-2
    6. Sauer, E., Terzis, A., Theiss, M., Weigand, B., & Gross, J. (2018). Prediction of Contact Angles and Density Profiles of Sessile Droplets Using Classical Density Functional Theory Based on the PCP-SAFT Equation of State. Langmuir, 34(42), Article 42. https://doi.org/10.1021/acs.langmuir.8b01985
    7. Schneider, M., Gläser, D., Flemisch, B., & Helmig, R. (2018). Comparison of finite-volume schemes for diffusion problems. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, 73, 82. https://doi.org/10.2516/ogst/2018064
    8. Seus, D., Mitra, K., Pop, I. S., Radu, F. A., & Rohde, C. (2018). A linear domain decomposition method for partially saturated flow in porous media. Computer Methods in Applied Mechanics and Engineering, 333, 331--355. https://doi.org/10.1016/j.cma.2018.01.029
    9. Yang, G., Weigand, B., Terzis, A., Weishaupt, K., & Helmig, R. (2018). Numerical Simulation of Turbulent Flow and Heat Transfer in a Three-Dimensional Channel Coupled with Flow Through Porous Structures. Transport in Porous Media, 122(1), Article 1. https://doi.org/10.1007/s11242-017-0995-9
    10. Zhang, H., Frey, S., Steeb, H., Uribe, D., Ertl, T., & Wang, W. (2018). Visualization of Bubble Formation in Porous Media. IEEE Transactions on Visualization and Computer Graphics, 1–1. https://doi.org/10.1109/TVCG.2018.2864506
  8. 2017

    1. Frey, S., & Ertl, T. (2017). Flow-Based Temporal Selection for Interactive Volume Visualization. Computer Graphics Forum, 36(8), Article 8. https://doi.org/10.1111/cgf.13070
To the top of the page