Publications in scientific journals

The list of published articles and dissertations reflects the success of SFB 1313.

List of Publications within SFB 1313

  1. 2023

    1. Ackermann, S., Fest-Santini, S., Veyskarami, M., Helmig, R., & Santini, M. (2023). Experimental validation of a coupling concept for drop formation and growth onto porous materials by high-resolution X-ray imaging technique. International Journal of Multiphase Flow, 160, 104371.
    2. Boon, W. M., Gläser, D., Helmig, R., & Yotov, I. (2023). Flux-mortar mixed finite element methods with multipoint flux approximation. Computer Methods in Applied Mechanics and Engineering, 405, 115870.
    3. Burbulla, S., Formaggia, L., Rohde, C., & Scotti, A. (2023). Modeling fracture propagation in poro-elastic media combining phase-field and discrete fracture models. Computer Methods in Applied Mechanics and Engineering, 403, 115699.
    4. Dastjerdi, S. V., Karadimitriou, N., Hassanizadeh, S. M., & Steeb, H. (2023). Experimental evaluation of fluid connectivity in two-phase flow in porous media. Advances in Water Resources, 104378.
    5. Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. SIAM Journal on Scientific Computing, 45(1), A49--A73.
  2. 2022

    1. Ahmadi, N., Muniruzzaman, M., Sprocati, R., Heck, K., Mosthaf, K., & Rolle, M. (2022). Coupling soil/atmosphere interactions and geochemical processes: A multiphase and multicomponent reactive transport approach. Advances in Water Resources, 104303.
    2. Bringedal, C., Schollenberger, T., Pieters, G. J. M., van Duijn, C. J., & Helmig, R. (2022). Evaporation-Driven Density Instabilities in Saturated Porous Media. Transport in Porous Media.
    3. Burbulla, S., & Rohde, C. (2022). A finite-volume moving-mesh method for two-phase flow in fracturing porous media. Journal of Computational Physics, 111031.
    4. Burbulla, S., Dedner, A., Hörl, M., & Rohde, C. (2022). Dune-MMesh: The Dune Grid Module for Moving Interfaces. Journal of Open Source Software, 7(74), 3959.
    5. Cheng, K., Lu, Z., Xiao, S., Oladyshkin, S., & Nowak, W. (2022). Mixed covariance function kriging model for uncertainty quantification. International Journal for Uncertainty Quantification, 12(3), 17--30.
    6. Eggenweiler, E., Discacciati, M., & Rybak, I. (2022). Analysis of the Stokes-Darcy problem with generalised interface conditions. ESAIM: Mathematical Modelling and Numerical Analysis.
    7. Ehlers, W., Sonntag, A., & Wagner, A. (2022). On Hydraulic Fracturing in Fully and Partially Saturated Brittle Porous Material. In F. Aldakheel, B. Hudobivnik, M. Soleimani, H. Wessels, C. Weißenfels, & M. Marino (Eds.), Current Trends and Open Problems in Computational Mechanics (pp. 111--119). Springer International Publishing.
    8. Gonzalez-Nicolas, A., Bilgic, D., Kröker, I., Mayar, A., Trevisan, L., Steeb, H., Wieprecht, S., & Nowak, W. (2022). Optimal Exposure Time in Gamma-Ray Attenuation Experiments for Monitoring Time-Dependent Densities. Transport in Porous Media.
    9. Gravelle, S., Holm, C., & Schlaich, A. (2022). Transport of thin water films: from thermally activated random walks to hydrodynamics. The Journal of Chemical Physics.
    10. Gravelle, S., Beyer, D., Brito, M., Schlaich, A., & Holm, C. (2022). Reconstruction of NMR Relaxation Rates from Coarse-Grained Polymer Simulations.
    11. Hommel, J., Gehring, L., Weinhardt, F., Ruf, M., & Steeb, H. (2022). Effects of Enzymatically Induced Carbonate Precipitation on Capillary Pressure–Saturation Relations. Minerals, 12(10), Article 10.
    12. Kloker, L. H., & Bringedal, C. (2022). Solution approaches for evaporation-driven density instabilities in a slab of saturated porous media. Physics of Fluids, 34(9), 096606.
    13. Koch, T. (2022). Projection-based resolved interface 1D-3D mixed-dimension method for embedded tubular network systems. Computers & Mathematics with Applications, 109, 15--29.
    14. Kröker, I., & Oladyshkin, S. (2022). Arbitrary multi-resolution multi-wavelet-based polynomial chaos expansion for data-driven uncertainty quantification. Reliability Engineering &amp$\mathsemicolon$ System Safety, 108376.
    15. Kurzeja, P., & Steeb, H. (2022). Acoustic waves in saturated porous media with gas bubbles. Philosophical Transactions of the Royal Society.
    16. Lee, D., Karadimitriou, N., Ruf, M., & Steeb, H. (2022). Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods. Solid Earth, 13(9), 1475--1494.
    17. Michalkowski, C., Weishaupt, K., Schleper, V., & Helmig, R. (2022). Modeling of Two Phase Flow in a Hydrophobic Porous Medium Interacting with a Hydrophilic Structure. Transport in Porous Media.
    18. Michalkowski, C., Veyskarami, M., Bringedal, C., Helmig, R., & Schleper, V. (2022). Two-phase Flow Dynamics at the Interface Between GDL and Gas Distributor Channel Using a Pore-Network Model. Transport in Porous Media.
    19. Schmidt, F., Krüger, M., Keip, M.-A., & Hesch, C. (2022). Computational homogenization of higher-order continua. International Journal for Numerical Methods in Engineering, n/a(n/a), Article n/a.
    20. Schmidt, P., Jaust, A., Steeb, H., & Schulte, M. (2022). Simulation of flow in deformable fractures using a quasi-Newton based partitioned coupling approach. Computational Geosciences.
    21. Scholz, L., & Bringedal, C. (2022). A Three-Dimensional Homogenization Approach for Effective Heat Transport in Thin Porous Media. Transport in Porous Media.
    22. Seus, D., Radu, F. A., & Rohde, C. (2022). Towards hybrid two-phase modelling using linear domain decomposition. Numerical Methods for Partial Differential Equations.
    23. Sharmin, S., Bastidas, M., Bringedal, C., & Pop, I. S. (2022). Upscaling a Navier-Stokes-Cahn-Hilliard model for two-phase porous-media flow with solute-dependent surface tension effects. Applicable Analysis, 0(0), 1–23.
    24. Swamynathan, S., Jobst, S., Kienle, D., & Keip, M.-A. (2022). Phase-field modeling of fracture in strain-hardening elastomers: Variational formulation, multiaxial experiments and validation. Engineering Fracture Mechanics, 108303.
    25. Trivedi, Z., Gehweiler, D., Wychowaniec, J. K., Ricken, T., Gueorguiev-Rüegg, B., Wagner, A., & Röhrle, O. (2022). A continuum mechanical porous media model for vertebroplasty: Numerical simulations and experimental validation.
    26. Valavanides, M. S., Karadimitriou, N., & Steeb, H. (2022). Flow Dependent Relative Permeability Scaling for Steady-State Two-Phase Flow in Porous Media: Laboratory Validation on a Microfluidic Network. In SPWLA Annual Logging Symposium: Vol. Day 5 Wed, June 15, 2022.
    27. van Westen, T., Hammer, M., Hafskjold, B., Aasen, A., Gross, J., & Wilhelmsen, Ø. (2022). Perturbation theories for fluids with short-ranged attractive forces: A case study of the Lennard-Jones spline fluid. The Journal of Chemical Physics, 156(10), 104504.
    28. von Wolff, L., & Pop, I. S. (2022). Upscaling of a Cahn–Hilliard Navier–Stokes model with precipitation and dissolution in a thin strip. Journal of Fluid Mechanics, 941, A49--. 10.1017/jfm.2022.308
    29. Wang, W., Lozano-Durán, A., Helmig, R., & Chu, X. (2022). Spatial and spectral characteristics of information flux between turbulent boundary layers and porous media. Journal of Fluid Mechanics, 949, A16--. 10.1017/jfm.2022.770
    30. Weinhardt, F., Deng, J., Hommel, J., Vahid Dastjerdi, S., Gerlach, R., Steeb, H., & Class, H. (2022). Spatiotemporal Distribution of Precipitates and Mineral Phase Transition During Biomineralization Affect Porosity–Permeability Relationships. Transport in Porous Media.
    31. Zech, A., & de Winter, M. (2022). A Probabilistic Formulation of the Diffusion Coefficient in Porous Media as Function of Porosity. Transport in Porous Media.
  3. 2021

    1. Ackermann, S., Bringedal, C., & Helmig, R. (2021). Multi-scale three-domain approach for coupling free flow and flow in porous media including droplet-related interface processes. Journal of Computational Physics, 429, 109993.
    2. Ahmadi, N., Heck, K., Rolle, M., Helmig, R., & Mosthaf, K. (2021). On multicomponent gas diffusion and coupling concepts for porous media and free flow: a benchmark study. Computational Geosciences.
    3. Balcewicz, M., Siegert, M., Gurris, M., Ruf, M., Krach, D., Steeb, H., & Saenger, E. H. (2021). Digital rock physics: A geological driven workflow for the segmentation of anisotropic Ruhr sandstone. Front. Earth Sci., 9, 673753.
    4. Chu, X., Wang, W., Müller, J., Von Schöning, H., Liu, Y., & Weigand, B. (2021). Turbulence Modulation and Energy Transfer in Turbulent Channel Flow Coupled with One-Side Porous Media. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’20 (pp. 373--386). Springer International Publishing.
    5. Chu, X., Müller, J., & Weigand, B. (2021). Interface-Resolved Direct Numerical Simulation of Turbulent Flow over Porous Media. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’19 (pp. 343--354). Springer International Publishing.
    6. Class, H., Bürkle, P., Sauerborn, T., Trötschler, O., Strauch, B., & Zimmer, M. (2021). On the role of density-driven dissolution of CO2 in phreatic karst systems. Water Resources Research, n/a(n/a), e2021WR030912.
    7. Eller, J., Matzerath, T., van Westen, T., & Gross, J. (2021). Predicting solvation free energies in non-polar solvents using classical density functional theory based on the PC-SAFT equation of state. The Journal of Chemical Physics, 154(24), 244106.
    8. Eller, J., & Gross, J. (2021). Free-Energy-Averaged Potentials for Adsorption in Heterogeneous Slit Pores Using PC-SAFT Classical Density Functional Theory. Langmuir.
    9. Erfani, H., Karadimitriou, N., Nissan, A., Walczak, M. S., An, S., Berkowitz, B., & Niasar, V. (2021). Process-Dependent Solute Transport in Porous Media. Transport in Porous Media.
    10. Frey, S., Scheller, S., Karadimitriou, N., Lee, D., Reina, G., Steeb, H., & Ertl, T. (2021). Visual Analysis of Two-Phase Flow Displacement Processes in Porous Media. Computer Graphics Forum, n/a(n/a), Article n/a.
    11. Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2021). Effects of surface roughness on the kinetic interface-sensitive tracer transport during drainage processes. Advances in Water Resources, 104044.
    12. Gläser, D., Schneider, M., Flemisch, B., & Helmig, R. (2021). Comparison of cell- and vertex-centered finite-volume schemes for flow in fractured porous media. Journal of Computational Physics, 110715.
    13. Haide, R., Fest-Santini, S., & Santini, M. (2021). Use of X-ray micro-computed tomography for the investigation of drying processes in porous media: A review. Drying Technology, 1--14.
    14. Kessler, C., Eller, J., Gross, J., & Hansen, N. (2021). Adsorption of light gases in covalent organic frameworks: comparison of classical density functional theory and grand canonical Monte Carlo simulations. Microporous and Mesoporous Materials, 111263.
    15. Koch, T., Weishaupt, K., Müller, J., Weigand, B., & Helmig, R. (2021). A (Dual) Network Model for Heat Transfer in Porous Media. Transport in Porous Media.
    16. Koch, T., Wu, H., & Schneider, M. (2021). Nonlinear mixed-dimension model for embedded tubular networks with application to root water uptake. Journal of Computational Physics, 110823.
    17. Lee, M., Lohrmann, C., Szuttor, K., Auradou, H., & Holm, C. (2021). The influence of motility on bacterial accumulation in a microporous channel. Soft Matter.
    18. Lunowa, S. B., Bringedal, C., & Pop, I. S. (2021). On an averaged model for immiscible two-phase flow with surface tension and dynamic contact angle in a thin strip. Studies in Applied Mathematics, n/a(n/a), Article n/a.
    19. Olivares, M. B., Bringedal, C., & Pop, I. S. (2021). A two-scale iterative scheme for a phase-field model for precipitation and dissolution in porous media. Applied Mathematics and Computation, 396, 125933.
    20. Polukhov, E., & Keip, M.-A. (2021). On the Computational Homogenization of Deformation–Diffusion Processes. PAMM, 20(1), Article 1.
    21. Reuschen, S., Jobst, F., & Nowak, W. (2021). Efficient discretization-independent Bayesian inversion of high-dimensional multi-Gaussian priors using a hybrid MCMC. Water Resources Research.
    22. Reuschen, S., Nowak, W., & Guthke, A. (2021). The Four Ways to Consider Measurement Noise in Bayesian Model Selection—And Which One to Choose. Water Resources Research, 57(11), e2021WR030391.
    23. Rodenberg, B., Desai, I., Hertrich, R., Jaust, A., & Uekermann, B. (2021). FEniCS–preCICE: Coupling FEniCS to other simulation software. SoftwareX, 16, 100807.
    24. Schlaich, A., Jin, D., Bocquet, L., & Coasne, B. (2021). Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces. Nature Materials.
    25. Seitz, G., Mohammadi, F., & Class, H. (2021). Thermochemical Heat Storage in a Lab-Scale Indirectly Operated CaO/Ca(OH)2 Reactor—Numerical Modeling and Model Validation through Inverse Parameter Estimation. Applied Sciences, 11(2), 682.
    26. Seyedpour, S. M., Valizadeh, I., Kirmizakis, P., Doherty, R., & Ricken, T. (2021). Optimization of the Groundwater Remediation Process Using a Coupled Genetic Algorithm-Finite Difference Method. Water, 13(3), 383.
    27. Sonntag, A., Wagner, A., & Ehlers, W. (2021). Modelling fluid-driven fractures for partially saturated porous materials. PAMM, 20(1), Article 1.
    28. Stierle, R., & Gross, J. (2021). Hydrodynamic density functional theory for mixtures from a variational principle and its application to droplet coalescence. The Journal of Chemical Physics, 155(13), 134101.
    29. Trivedi, Z., Bleiler, C., Gehweiler, D., Gueorguiev-Rüegg, B., Ricken, T., Wagner, A., & Röhrle, O. (2021). Simulating vertebroplasty: A biomechanical challenge. PAMM, 20(1), Article 1.
    30. von Wolff, L., Weinhardt, F., Class, H., Hommel, J., & Rohde, C. (2021). Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling. Transport in Porous Media.
    31. Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media.
    32. Wang, W. (王文康), Yang, G. (杨光), Evrim, C., Terzis, A., Helmig, R., & Chu, X. (初旭). (2021). An assessment of turbulence transportation near regular and random permeable interfaces. Physics of Fluids, 33(11), 115103.
    33. Weinhardt, F., Class, H., Dastjerdi, S. V., Karadimitriou, N., Lee, D., & Steeb, H. (2021). Experimental Methods and Imaging for Enzymatically Induced Calcite Precipitation in a Microfluidic Cell. Water Resources Research, 57(3), Article 3.
    34. Weishaupt, K., & Helmig, R. (2021). A dynamic and fully implicit non-isothermal, two-phase, two-component pore-network model coupled to single-phase free flow for the pore-scale description of evaporation processes. Water Resources Research.
    35. Xiao, S., Xu, T., Reuschen, S., Nowak, W., & Hendricks Franssen, H.-J. (2021). Bayesian Inversion of Multi-Gaussian Log-Conductivity Fields With Uncertain Hyperparameters: An Extension of Preconditioned Crank-Nicolson Markov Chain Monte Carlo With Parallel Tempering. Water Resources Research, 57(9), e2021WR030313.
    36. Yiotis, A., Karadimitriou, N. K., Zarikos, I., & Steeb, H. (2021). Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains. Scientific Reports, 11(1), Article 1.
  4. 2020

    1. Agélas, L., Schneider, M., Enchéry, G., & Flemisch, B. (2020). Convergence of nonlinear finite volume schemes for two-phase porous media flow on general meshes. IMA Journal of Numerical Analysis.
    2. Boon, W. M., & Nordbotten, J. M. (2020). Stable mixed finite elements for linear elasticity with thin inclusions. Computational Geosciences.
    3. Breitsprecher, K., Janssen, M., Srimuk, P., Mehdi, B. L., Presser, V., Holm, C., & Kondrat, S. (2020). How to speed up ion transport in nanopores. Nature Communications, 11(1), Article 1.
    4. Budisa, A., Boon, W. M., & Hu, X. (2020). Mixed-Dimensional Auxiliary Space Preconditioners. SIAM Journal on Scientific Computing, 42(5), A3367--A3396.
    5. Frey, S. (2020). Temporally Dense Exploration of Moving and Deforming Shapes. Computer Graphics Forum, 40(1), 7--21.
    6. Gläser, D., Flemisch, B., Class, H., & Helmig, R. (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5(56), 2291.
    7. Hommel, J., Akyel, A., Frieling, Z., Phillips, A. J., Gerlach, R., Cunningham, A. B., & Class, H. (2020). A Numerical Model for Enzymatically Induced Calcium Carbonate Precipitation. Applied Sciences, 10(13), 4538.
    8. Höge, M., Guthke, A., & Nowak, W. (2020). Bayesian Model Weighting: The Many Faces of Model Averaging. Water, 12(2), 309.
    9. Koch, T., Schneider, M., Helmig, R., & Jenny, P. (2020). Modeling tissue perfusion in terms of 1d-3d embedded mixed-dimension coupled problems with distributed sources. Journal of Computational Physics, 410, 109370.
    10. Koch, T., Helmig, R., & Schneider, M. (2020). A new and consistent well model for one-phase flow in anisotropic porous media using a distributed source model. Journal of Computational Physics, 410, 109369.
    11. Mitra, K., Köppl, T., Pop, I. S., van Duijn, C. J., & Helmig, R. (2020). Fronts in two-phase porous media flow problems: The effects of hysteresis and dynamic capillarity. Studies in Applied Mathematics, 144(4), 449--492.
    12. Müller, J., Offenhäuser, P., Reitzle, M., & Weigand, B. (2020). A Method to Reduce Load Imbalances in Simulations of Solidification Processes with Free Surface 3D. In M. M. Resch, Y. Kovalenko, W. Bez, E. Focht, & H. Kobayashi (Eds.), Sustained Simulation Performance 2018 and 2019 (pp. 163--184). Springer International Publishing.
    13. Poonoosamy, J., Haber-Pohlmeier, S., Deng, H., Deissmann, G., Klinkenberg, M., Gizatullin, B., Stapf, S., Brandt, F., Bosbach, D., & Pohlmeier, A. (2020). Combination of MRI and SEM to Assess Changes in the Chemical Properties and Permeability of Porous Media due to Barite Precipitation. Minerals, 10(3), 226.
    14. Schneider, M., Flemisch, B., Frey, S., Hermann, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313.
    15. Schout, G., Hartog, N., Hassanizadeh, S. M., Helmig, R., & Griffioen, J. (2020). Impact of groundwater flow on methane gas migration and retention in unconsolidated aquifers. Journal of Contaminant Hydrology, 230, 103619.
    16. Stierle, R., Sauer, E., Eller, J., Theiss, M., Rehner, P., Ackermann, P., & Gross, J. (2020). Guide to efficient solution of PC-SAFT classical Density Functional Theory in various Coordinate Systems using fast Fourier and similar Transforms. Fluid Phase Equilibria, 504, 112306.
    17. van Duijn, C. J., Mikelić, A., & Wick, T. (2020). Mathematical theory and simulations of thermoporoelasticity. Computer Methods in Applied Mechanics and Engineering, 366, 113048.
    18. Xu, T., Reuschen, S., Nowak, W., & Franssen, H.-J. H. (2020). Preconditioned Crank-Nicolson Markov Chain Monte Carlo Coupled With Parallel Tempering: An Efficient Method for Bayesian Inversion of Multi-Gaussian Log-Hydraulic Conductivity Fields. Water Resources Research, 56(8), Article 8.
  5. 2019

    1. Beck, M., & Class, H. (2019). Modelling fault reactivation with characteristic stress-drop terms. Advances in Geosciences, 49, 1--7.
    2. Eurich, L., Shahmoradi, S., Wagner, A., Borja, R., & Ehlers, W. (2019). Simulating plant-cell dehydration using a double-porosity formulation based on the Theory of Porous Media. PAMM, 19(1), Article 1.
    3. Kienle, D., & Keip, M.-A. (2019). Modeling of hydraulically induced fractures in elastic-plastic solids. PAMM, 19(1), Article 1.
    4. Köppel, M., Martin, V., Jaffré, J., & Roberts, J. E. (2019). A Lagrange multiplier method for a discrete fracture model for flow in porous media. Computational Geosciences, 23(2), 239--253.
    5. Lee, M., Szuttor, K., & Holm, C. (2019). A computational model for bacterial run-and-tumble motion. The Journal of Chemical Physics, 150(17), 174111.
    6. Trivedi, Z., Bleiler, C., Wagner, A., & Röhrle, O. (2019). A parametric permeability study for a simplified vertebra based on regular microstructures. PAMM, 19(1), Article 1.
  6. 2018

    1. Gralka, P., Grottel, S., Staib, J., Schatz, K., Karch, G. K., Hirschler, M., Krone, M., Reina, G., Gumhold, S., & Ertl, T. (2018). 2016 IEEE Scientific Visualization Contest Winner: Visual and Structural Analysis of Point-based Simulation Ensembles. IEEE Computer Graphics and Applications, 38(3), 106–117.
    2. Seus, D., Mitra, K., Pop, I. S., Radu, F. A., & Rohde, C. (2018). A linear domain decomposition method for partially saturated flow in porous media. Computer Methods in Applied Mechanics and Engineering, 333, 331--355.
  7. 2017

    1. Frey, S., & Ertl, T. (2017). Flow-Based Temporal Selection for Interactive Volume Visualization. Computer Graphics Forum, 36(8), 153–165.
  8. 0

    1. Lunowa, S. B., Mascini, A., Bringedal, C., Bultreys, T., Cnudde, V., & Pop, I. S. (n.d.). Dynamic Effects during the Capillary Rise of Fluids in Cylindrical Tubes. Langmuir, 0(0), null.
To the top of the page