Publications

The list of published articles and dissertations reflects the success of SFB 1313.

List of Publications within SFB 1313

  1. 2021

    1. Berre, I., Boon, W. M., Flemisch, B., Fumagalli, A., Gläser, D., Keilegavlen, E., Scotti, A., Stefansson, I., Tatomir, A., Brenner, K., Burbulla, S., Devloo, P., Duran, O., Favino, M., Hennicker, J., Lee, I.-H., Lipnikov, K., Masson, R., Mosthaf, K., … Zulian, P. (2021). Verification benchmarks for single-phase flow in three-dimensional fractured porous media. Advances in Water Resources, 147, 103759. https://doi.org/10.1016/j.advwatres.2020.103759
  2. 2020

    1. Bahlmann, L. M., Smits, K., Heck, K., Coltman, E., Helmig, R., & Neuweiler, I. (n.d.). Gas Component Transport across the Soil-Atmosphere-Interface for Gases of Different Density: Experiments and Modeling. Water Resources Research. https://doi.org/10.1029/2020wr027600
    2. Boon, W. M. (n.d.). A parameter-robust iterative method for Stokes–Darcy problems retaining local mass conservation. ESAIM: Mathematical Modelling and Numerical Analysis, 54(6), 2045--2067. https://doi.org/10.1051/m2an/2020035
    3. Bringedal, C. (2020). A Conservative Phase-Field Model for Reactive Transport. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (pp. 537--545). Springer International Publishing.
    4. Bringedal, C., von Wolff, L., & Pop, I. S. (n.d.). Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale Modeling & Simulation, 18(2), 1076--1112. https://doi.org/10.1137/19m1239003
    5. Burbulla, S., & Rohde, C. (2020). A Fully Conforming Finite Volume Approach to Two-Phase Flow in Fractured Porous Media. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (pp. 547--555). Springer International Publishing.
    6. Chu, X., Wang, W., Yang, G., Terzis, A., Helmig, R., & Weigand, B. (n.d.). Transport of Turbulence Across Permeable Interface in a Turbulent Channel Flow: Interface-Resolved Direct Numerical Simulation. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01506-w
    7. Chu, X., Wu, Y., Rist, U., & Weigand, B. (n.d.). Instability and transition in an elementary porous medium. Phys. Rev. Fluids, 5(4), 044304. https://doi.org/10.1103/PhysRevFluids.5.044304
    8. Coltman, E., Lipp, M., Vescovini, A., & Helmig, R. (n.d.). Obstacles, Interfacial Forms, and Turbulence: A Numerical Analysis of Soil--Water Evaporation Across Different Interfaces. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01445-6
    9. de Winter, D. A. M., Weishaupt, K., Scheller, S., Frey, S., Raoof, A., Hassanizadeh, S. M., & Helmig, R. (n.d.). The Complexity of Porous Media Flow Characterized in a Microfluidic Model Based on Confocal Laser Scanning Microscopy and Micro-PIV. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01515-9
    10. Eggenweiler, E., & Rybak, I. (2020). Interface Conditions for Arbitrary Flows in Coupled Porous-Medium and Free-Flow Systems. In R. Klöfkorn, E. Keilegavlen, F. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods,Theoretical Aspects, Examples (Vol. 323, pp. 345--353). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_31
    11. Eggenweiler, E., & Rybak, I. (2020). Unsuitability of the Beavers–Joseph interface condition for filtration problems. Journal of Fluid Mechanics, 892, A10. https://doi.org/DOI: 10.1017/jfm.2020.194
    12. Emmert, S., Davis, K., Gerlach, R., & Class, H. (2020). The Role of Retardation, Attachment and Detachment Processes during Microbial Coal-Bed Methane Production after Organic Amendment. Water, 12(11), Article 11. https://doi.org/10.3390/w12113008
    13. Emmert, S., Class, H., Davis, K. J., & Gerlach, R. (n.d.). Importance of specific substrate utilization by microbes in microbially enhanced coal-bed methane production: A modelling study. International Journal of Coal Geology, 229, 103567. https://doi.org/10.1016/j.coal.2020.103567
    14. Ghosh, T., Bringedal, C., Helmig, R., & Sekhar, G. P. R. (n.d.). Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity. Advances in Water Resources, 145, 103716. https://doi.org/10.1016/j.advwatres.2020.103716
    15. Hasan, S., Niasar, V., Karadimitriou, N. K., Godinho, J. R. A., Vo, N. T., An, S., Rabbani, A., & Steeb, H. (2020). Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2011716117
    16. Heck, K., Coltman, E., Schneider, J., & Helmig, R. (n.d.). Influence of Radiation on Evaporation Rates: A Numerical Analysis. Water Resources Research, 56(10), Article 10. https://doi.org/10.1029/2020wr027332
    17. Jaust, A., Weishaupt, K., Mehl, M., & Flemisch, B. (2020). Partitioned Coupling Schemes for Free-Flow and Porous-Media Applications with Sharp Interfaces. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (pp. 605--613). Springer International Publishing.
    18. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (n.d.). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.02.012
    19. Konangi, S., Palakurthi, N. K., Karadimitriou, N. K., Comer, K., & Ghia, U. (n.d.). Comparison of Pore-scale Capillary Pressure to Macroscale Capillary Pressure using Direct Numerical Simulations of Drainage under Dynamic and Quasi-static Conditions. Advances in Water Resources, 103792. https://doi.org/10.1016/j.advwatres.2020.103792
    20. Lipp, M., & Helmig, R. (2020). A Locally-Refined Locally-Conservative Quadtree Finite-Volume Staggered-Grid Scheme. In G. Lamanna, S. Tonini, G. E. Cossali, & B. Weigand (Eds.), Droplet Interactions and Spray Processes (pp. 149--159). Springer International Publishing.
    21. Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (n.d.). Bayesian3 Active Learning for the Gaussian Process Emulator Using Information Theory. Entropy, 22(8), 890. https://doi.org/10.3390/e22080890
    22. Piotrowski, J., Huisman, J. A., Nachshon, U., Pohlmeier, A., & Vereecken, H. (2020). Gas Permeability of Salt Crusts Formed by Evaporation from Porous Media. Geosciences, 10(11), Article 11. https://doi.org/10.3390/geosciences10110423
    23. Polukhov, E., & Keip, M.-A. (n.d.). Computational homogenization of transient  chemo-mechanical processes based on a variational minimization principle. Advanced Modeling and Simulation in Engineering Sciences, 7(1), Article 1. https://doi.org/10.1186/s40323-020-00161-6
    24. Reuschen, S., Xu, T., & Nowak, W. (n.d.). Bayesian inversion of hierarchical geostatistical models using a parallel-tempering sequential Gibbs MCMC. Advances in Water Resources, 141, 103614. https://doi.org/10.1016/j.advwatres.2020.103614
    25. Rohde, C., & von Wolff, L. (n.d.). A Ternary Cahn-Hilliard Navier-Stokes Model for two Phase Flow with Precipitation and Dissolution. Mathematical Models and Methods in Applied Sciences. https://doi.org/10.1142/s0218202521500019
    26. Ruf, M., & Steeb, H. (n.d.). An open, modular, and flexible micro X-ray computed tomography system for research. Review of Scientific Instruments, 91(11), 113102--. https://doi.org/10.1063/5.0019541
    27. Rybak, I., Schwarzmeier, C., Eggenweiler, E., & Rüde, U. (2020). Validation and calibration of coupled porous-medium and  free-flow problems using pore-scale resolved models. Comput. Geosci. https://doi.org/10.1007/s10596-020-09994-x
    28. Scheer, D., Class, H., & Flemisch, B. (2020). Subsurface Environmental Modelling Between Science and Policy. Springer International Publishing. https://doi.org/10.1007/978-3-030-51178-4
    29. Schneider, M., Weishaupt, K., Gläser, D., Boon, W. M., & Helmig, R. (2020). Coupling staggered-grid and MPFA finite volume methods for free flow/porous-medium flow problems. Journal of Computational Physics, 401. https://doi.org/https://doi.org/10.1016/j.jcp.2019.109012
    30. Schultze-Jena, A., Boon, M. A., de Winter, D. A. M., Bussmann, P. J. Th., Janssen, A. E. M., & van der Padt, A. (n.d.). Predicting intraparticle diffusivity as function of stationary phase characteristics in preparative chromatography. Journal of Chromatography A, 1613, 460688. https://doi.org/10.1016/j.chroma.2019.460688
    31. Shokri-Kuehni, S. M. S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., & Shokri, N. (n.d.). Water Table Depth and Soil Salinization: From Pore-Scale Processes to Field-Scale Responses. Water Resources Research, 56(2), Article 2. https://doi.org/10.1029/2019wr026707
    32. Weishaupt, K., Terzis, A., Zarikos, I., Yang, G., Flemisch, B., de Winter, D. A. M., & Helmig, R. (n.d.). A Hybrid-Dimensional Coupled Pore-Network/Free-Flow Model Including Pore-Scale Slip and Its Application to a Micromodel Experiment. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01477-y
    33. Yang, G. (杨光), Chu, X. (初旭), Vaikuntanathan, V., Wang, S. (王珊珊), Wu, J. (吴静怡), Weigand, B., & Terzis, A. (n.d.). Droplet mobilization at the walls of a microfluidic channel. Physics of Fluids, 32(1), 012004--. https://doi.org/10.1063/1.5139308
  3. 2019

    1. Chu, X., Yang, G., Pandey, S., & Weigand, B. (n.d.). Direct numerical simulation of convective heat transfer in porous media. International Journal of Heat and Mass Transfer, 133, 11--20. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.172
    2. Ehlers, W., & Wagner, A. (n.d.). Modelling and simulation methods applied to coupled problems in porous-media mechanics. Archive of Applied Mechanics. https://doi.org/10.1007/s00419-019-01520-5
    3. Hasan, S. N., Joekar-Niasar, V., Karadimitriou, N., & Sahimi, M. (2019). Saturation-Dependence of Non-Fickian Transport in Porous Media. Water Resources Research. https://doi.org/https://doi.org/10.1029/2018WR023554
    4. Karadimitriou, N. K., Mahani, H., Steeb, H., & Niasar, V. (n.d.). Nonmonotonic Effects of Salinity on Wettability Alteration and Two-Phase Flow Dynamics in PDMS Micromodels. Water Resources Research. https://doi.org/10.1029/2018wr024252
    5. Kienle, D., Aldakheel, F., & Keip, M.-A. (n.d.). A finite-strain phase-field approach to ductile failure of frictional materials. International Journal of Solids and Structures. https://doi.org/10.1016/j.ijsolstr.2019.02.006
    6. Oladyshkin, S., & Nowak, W. (n.d.). The Connection between Bayesian Inference and Information Theory for Model Selection, Information Gain and Experimental Design. Entropy, 21(11), 1081. https://doi.org/10.3390/e21111081
    7. Steeb, H., & Renner, J. (n.d.). Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables. Transport in Porous Media. https://doi.org/10.1007/s11242-019-01319-6
    8. Teichtmeister, S., Mauthe, S., & Miehe, C. (n.d.). Aspects of finite element formulations for the coupled problem of poroelasticity based on a canonical minimization principle. Computational Mechanics. https://doi.org/10.1007/s00466-019-01677-4
    9. Terzis, A., Zarikos, I., Weishaupt, K., Yang, G., Chu, X., Helmig, R., & Weigand, B. (n.d.). Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow. Physics of Fluids, 31(4), 042001--. https://doi.org/10.1063/1.5092169
    10. Weishaupt, K., Joekar-Niasar, V., & Helmig, R. (2019). An efficient coupling of free flow and porous media flow using the pore-network modeling approach. Journal of Computational Physics: X, 1. https://doi.org/doi.org/10.1016/j.jcpx.2019.100011
    11. Xiao, S., Reuschen, S., Köse, G., Oladyshkin, S., & Nowak, W. (n.d.). Estimation of small failure probabilities based on thermodynamic integration and parallel tempering. Mechanical Systems and Signal Processing, 133, 106248. https://doi.org/10.1016/j.ymssp.2019.106248
    12. Yang, G., Terzis, A., Zarikos, I., Hassanizadeh, S. M., Weigand, B., & Helmig, R. (n.d.). Internal flow patterns of a droplet pinned to the hydrophobic surfaces of a confined microchannel using micro-PIV and VOF simulations. Chemical Engineering Journal, 370, 444--454. https://doi.org/10.1016/j.cej.2019.03.191
    13. Yang, G., Coltman, E., Weishaupt, K., Terzis, A., Helmig, R., & Weigand, B. (n.d.). On the Beavers--Joseph Interface Condition for Non-parallel Coupled Channel Flow over a Porous Structure at High Reynolds Numbers. Transport in Porous Media. https://doi.org/10.1007/s11242-019-01255-5
    14. Yang, G., Vaikuntanathan, V., Terzis, A., Cheng, X., Weigand, B., & Helmig, R. (2019). Impact of a Linear Array of Hydrophilic and Superhydrophobic Spheres on a Deep Water Pool. Colloids Interfaces, 3(1), Article 1. https://doi.org/10.3390/colloids3010029
    15. Yin, X., Zarikos, I., Karadimitriou, N. K., Raoof, A., & Hassanizadeh, S. M. (n.d.). Direct simulations of two-phase flow experiments of different geometry complexities using Volume-of-Fluid (VOF) method. Chemical Engineering Science, 195, 820--827. https://doi.org/10.1016/j.ces.2018.10.029
  4. 2018

    1. Chu, X., Weigand, B., & Vaikuntanathan, V. (2018). Flow turbulence topology in regular porous media: From macroscopic to microscopic scale with direct numerical simulation. Physics of Fluids, 30(6), 065102. https://doi.org/10.1063/1.5030651
    2. Cunningham, A. B., Class, H., Ebigbo, A., Gerlach, R., Phillips, A. J., & Hommel, J. (n.d.). Field-scale modeling of microbially induced calcite precipitation. Computational Geosciences. https://doi.org/10.1007/s10596-018-9797-6
    3. Frey, S. (2018). Spatio-Temporal Contours from Deep Volume Raycasting. Computer Graphics Forum, 37(3), 513–524. https://doi.org/10.1111/cgf.13438
    4. Hommel, J., Coltman, E., & Class, H. (n.d.). Porosity--Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)geochemically Altered Porous Media. Transport in Porous Media, 124(2), 589--629. https://doi.org/10.1007/s11242-018-1086-2
    5. Sauer, E., Terzis, A., Theiss, M., Weigand, B., & Gross, J. (n.d.). Prediction of Contact Angles and Density Profiles of Sessile Droplets Using Classical Density Functional Theory Based on the PCP-SAFT Equation of State. Langmuir, 34(42), 12519--12531. https://doi.org/10.1021/acs.langmuir.8b01985
    6. Schneider, M., Gläser, D., Flemisch, B., & Helmig, R. (2018). Comparison of finite-volume schemes for diffusion problems. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, 73, 82. https://doi.org/10.2516/ogst/2018064
    7. Yang, G., Weigand, B., Terzis, A., Weishaupt, K., & Helmig, R. (n.d.). Numerical Simulation of Turbulent Flow and Heat Transfer in a Three-Dimensional Channel Coupled with Flow Through Porous Structures. Transport in Porous Media, 122(1), 145--167. https://doi.org/10.1007/s11242-017-0995-9
    8. Zhang, H., Frey, S., Steeb, H., Uribe, D., Ertl, T., & Wang, W. (2018). Visualization of Bubble Formation in Porous Media. IEEE Transactions on Visualization and Computer Graphics, 1–1. https://doi.org/10.1109/TVCG.2018.2864506

Contact

This picture showsKatharina Heck
M. Sc.

Katharina Heck

Doctoral Researcher, Management, Research Project A02

This picture showsPatrizia Ambrisi
M.A.

Patrizia Ambrisi

Project Ö - Public Relations

To the top of the page