Research Project A03

Development of interface concepts using averaging techniques

Research

New, more general interface conditions are required to couple free-flow and porous-medium systems since traditional coupling concepts provide reliable results for simplified cases only. Averaging theory is a powerful mathematical tool that can be applied to derive such conditions. The objectives of this project are to (i) derive new interface concepts for single- and multi-phase flow systems using averaging techniques, (ii) validate the newly developed interface conditions, and (iii) develop robust and efficient numerical methods for coupled flow problems.

Publications in Project A03

  1. Eggenweiler, E., & Rybak, I. (2020). Interface Conditions for Arbitrary Flows in Coupled Porous-Medium and Free-Flow Systems. In R. Klöfkorn, E. Keilegavlen, F. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods,Theoretical Aspects, Examples (Vol. 323, pp. 345--353). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_31
  2. Eggenweiler, Elissa, & Rybak, I. (2020). Unsuitability of the Beavers–Joseph interface condition for filtration problems. Journal of Fluid Mechanics, 892, A10. https://doi.org/DOI: 10.1017/jfm.2020.194

For further information please constact

Iryna Rybak
PD Dr.

Iryna Rybak

Principal Investigator, Research Project A03

To the top of the page