Dieses Bild zeigt

Collaborative Research Centre 1313 / Sonderforschungsbereich 1313

CRC 1313 / SFB 1313: Interface-Driven Multi-Field Processes in Porous Media
- Flow, Transport and Deformation -

Research Profile


The research in this Collaborative Research Centre (Sonderforschungsbereich SFB) aims to acquire the much-needed fundamental understanding of how interfaces affect flow, transport and deformation processes in porous-media systems. This will involve the challenging tasks of quantifying how the dynamics of fluid-fluid and fluid-solid interfaces in porous-media systems are affected by pore geometry, heterogeneity and fractures, and of developing mathematical and computational models that describe the effective behaviour of porous-media systems including the effects of interfaces that occur on much smaller spatial scales.

Flow, transport and deformation in porous media are highly coupled processes that strongly depend on the non-linear interplay between physical, chemical and biological phenomena. According to the current state of the art, the analysis of these processes is mostly carried out on a variety of characteristic spatial and temporal scales that are determined by the geometry, structure and heterogeneity of the porous media. However, it is increasingly being recognised that the relevant overall functioning of porous-media systems is dictated by the character, geometry and dynamics of various types of fluid-fluid and fluid-solid interfaces that occur not only on the characteristic scales but most notably on smaller scales. For this reason, many available model concepts do not adequately capture and predict the actual system behaviour. Examples for this lack of predictive ability include the extended Darcy’s law for multi-phase flow, current models for evaporation from porous media, and existing models for fracture/damage propagation in porous media.


The relevance of the research of SFB 1313 is especially pronounced in complex coupled processes such as infiltration, multi-phase flow, evaporation from porous media, chemical reactions that change the pore structure, deposition of solids within the pore space and fracture propagation through porous media.

Examples for such complex interfacial processes are the flow of organic liquids in contaminated soils; the storage of ''green'' gas (methane or hydrogen from renewable sources via power-to-gas), the flow of complex fluids in biological tissues; or the melting and metamorphism of snow.

In technical systems examples are the drying of paper pulp; the absorption of liquids in nappies or in super-absorbent polymers; gas and water transport in fuel cells; the drying of foods and building materials; or thermo-chemical energy storage.  

In order to focus research efforts within SFB 1313, four projects areas have been defined that are representative of a wide range of interface-driven processes in porous media.

  • Project Area A: Complex interface-dependent exchange processes (mass, momentum and energy) for coupled free-flow/porous-media systems.
  • Project Area B: Complex fracture and damage processes in fluid-filled porous media.
  • Project Area C: Pore-space alterations due to interacting processes at the interface between the fluid and the solid phase.
  • Project Area D: Work in the aforementioned project areas will involve a coordinated research effort that combines mathematical and computational model development with advanced multi-scale imaging-based experiments. Project Areas A to C share many conceptual challenges, such as the visualization of both simulation and experimental results, the definition of benchmarks for code and model validation, as well as the coupling of different multi-physics and multi-scale simulation environments.

General Information


Sonderforschungsbereich 1313 "Interface-Driven Multi-Field Processes in Porous Media – Flow, Transport and Deformation" (SFB 1313) is a scientific institution of the University of Stuttgart and funded by the Deutsche Forschungsgemeinschaft (DFG) since 1st January 2018. SFB 1313 is affiliated to the Stuttgart Centre for Simulation Sciences (SC SimTech) and to the Faculty 2 "Civil and Environmental Engineering".

From 2007 to 2016, the Deutsche Forschungsgemeinschaft (DFG) funded the International Research Training Group "Non-linearities and Upscaling in Porous Media" (IRTG 1398 "NUPUS"). The aim of IRTG 1313 NUPUS was the development of modulation concepts and numerical methods for the description of multiphase processes in porous media. Leading principal investigators was Rainer Helmig. He initiated the research project in collaboration with Majid Hassanizadeh from Utrecht University und further scientists of the Universities of Stuttgart, Delft, Eindhofen, Utrecht and Wageningen. Before the second funding period started, Norwegian scientists from the University of Bergen joined the project. The Dutch partners were funded by the NWO (Netherlands Organisation for Scientific Research) and the norwegian partner by the RCN (Research Council of Norway).

Over the years, scientists involved in IRTG 1313 NUPUS excelled in the research area of porous media and achieved broad international presence.They established cooperations with internal and external partners and were internationally  visible by attending conferences and by joint publications. To continue and deepen the so far successful research activities, Stuttgart scientists applied for a Stuttgart Research Partnership „iNterdisciplinary Union of Porous media research at the University of Stuttgart“ (SRP "NUPUS") to be funded by the University of Stuttgart. The central aspects of SRP NUPUS are to bring scientists, especially Early Career Investigators, and students in the field of porous media together. Altogether 25 scientific institutions joined SRP NUPUS and signed collaboration agreements with the University of Stuttgart. The University will stop funding the SRP in mid 2018. However, the project will be integrated in SFB 1313 and continue to exist.



Dieses Bild zeigt Helmig
Prof. Dr.-Ing.

Rainer Helmig

Spokesman, Principal Investigator, Research Projects A02 and C02, Central Project Z

Dieses Bild zeigt Rohde
Prof. Dr. rer. nat.

Christian Rohde

Deputy Spokesman, Principal Investigator, Research Projects B03 and C02, Project MGK