December 1, 2019 /

SFB 1313 Publication by Nikolaos K. Karadimitriou

“Non-monotonic effects of salinity on wettability alteration and two-phase flow dynamics in PDMS micromodels”, Water Resource Research Journal

We are pleased to announce the SFB 1313 paper “Non-monotonic effects of salinity on wettability alteration and two-phase flow dynamics in PDMS micromodels”, published in the Water Resource Research Journal by Nikolaos K. Karadimitriou, Hassan Mahani, Holger Steeb, and Vahid Joekar-Niasar.

Abstract

The interaction between fluid-fluid and solid-fluid interfacial forces and surface roughness control the wettability. The ionic strength is the most important factor that controls electro-static forces. Thus, a modification of the ionic strength can potentially lead to a change of the wettability, as shown in recent experimental works related to low-salinity water flooding (LSWF), which is an enhanced oil recovery technology. Despite the significant research published on this topic, for the first time, we present how a change of the ionic strength alters the wettability in a pore network micromodel made of silanised PDMS. We visualised the invasion of brine in an elongated hydrophobic PDMS micromodel, initially saturated with Fluorinert. Under different injection rates and ionic strengths and using image processing, we quantified the contact angle distribution in the flow network, the recovery curve with time, the brine breakthrough time, and the temporal change of resident saturation. 

The results imply that there is an optimal range of salinity at which saturation change accelerates and the breakthrough saturation maximises, which highlights the concept of optimal salinity in wettability alteration. Also, we observed a shift of the contact angle distribution towards a more water-wet state. Given the non-monotonic trend of the breakthrough saturation with brine salinity, as well as recovery time versus the ionic strength, we conclude that the induced surface roughness is not the primary drive behind the accelerated saturation change. Therefore, the recovery time difference can be primarily attributed to the local alterations of the wetting properties of the porous medium due to the change of the ionic strength.

To the paper

Contact

This image shows Nikolaos K. Karadimitriou
Dr.

Nikolaos K. Karadimitriou

Principal Investigator, Project Z02 (PML)

This image shows Patrizia Ambrisi
M.A.

Patrizia Ambrisi

Project Ö - Public Relations

To the top of the page