SFB 1313 Pretty Porous Science Lecture #28 "How the displacement direction affects the average capillary pressure-saturation curves, with respect to a heterogeneity interface" with Mohammadjavad Shokriafra

November 22, 2022 /

The SFB 1313 "Pretty Porous Science Lecture" #28 will be given by Mohammadjavad Shokriafra from the University of Manchester | 22 November 2022 | 4 pm CET

We are pleased to announce that our SFB 1313 guest Mohammadjavad Shokriafra, PhD researcher at the University of Manchester, will give the SFB 1313 "Pretty Porous Science Lecture" #28. His talk will be on "How the displacement direction affects the average capillary pressure-saturation curves, with respect to a heterogeneity interface".

Date: 22 November 2022
Time: 4:00 pm CET
Speaker: Mohammadjavad Shokriafra, University of Manchester
Lecture title: "How the displacement direction affects the average capillary pressure-saturation curves, with respect to a heterogeneity interface"
Place: If you are interested in participating in the lecture, please contact melanie.lipp@iws.uni-stuttgart.de

Abstract

The capillary pressure-saturation relation is one of the key constitutive equations used for modeling multiphase (or partially saturated) flow in porous materials. It is known that this empirical relation
depends strongly on dynamic conditions, but the impact of a heterogeneity interface on this relationship has not been adequately studied. The present study employed optical imaging to visualize two-phase drainage under different injection rates and two flow directions, in a heterogeneous micromodel. By analyzing the curvatures of the fluid-fluid interfaces, the average capillary pressures for the coarse and fine sections of the micromodel, and the entire micromodel were estimated. Results show that the capillary pressure-saturation relation in the vicinity of a heterogeneity interface does not follow the conventional models proposed in the literature. The averaged capillary pressure over the entire micromodel for the fine-to-coarse (FtC) direction shows decreasing capillary pressure with decreasing wetting phase saturation. However, in the coarse-to-fine direction, a non-monotonic trend was observed. These initial findings highlight the gaps in the knowledge of upscaling capillary pressure in heterogeneous porous materials. Moreover, discontinuity in saturation was clearly more pronounced for the FtC direction, as a result of lower entry capillary resistance against the flow in the coarse section.

 

To the top of the page