Pretty Porous Science Lecture #25 "Structural Dynamics in Nanoporous Framework Materials" by Simon Krause

October 25, 2022

The SFB 1313 "Pretty Porous Science Lecture" #25 will be given by Simon Krause (Max-Planck-Institute for Solid State Research) | 25 October 2022 | 4 pm CET

We are pleased to announce that Simon Krause, post-doctoral researcher at the Max-Planck-Institute for Solid State Research, will give the SFB 1313 "Pretty Porous Science Lecture" #25. His talk will be on "Structural Dynamics in Nanoporous Framework Materials".

Date: Tuesday, 25 October 2022
Time: 4:00 pm CET
Speaker: Dr. Simon Krause
Lecture title: "Structural Dynamics in Nanoporous Framework Materials"
Place: Multi Media Lab (MML), U1.003, Pfaffenwaldring 61, 70569 Stuttgart, Campus Vaihingen.
If you are interested in participating in the lecture, please contact melanie.lipp@iws.uni-stuttgart.de

Abstract

Living matter is dynamic, responsive and vivid. Minerals, metals and stones are rigid, brittle, and dead. But there is also a middle ground which I hope to demonstrate on the example of hybrid framework materials. In particular, the presence of porosity decreases a materials’ mechanical stability while drastically increasing the internal specific surface area which amplifies intermolecular interactions and interfacial phenomena. Nevertheless, even for porous solids the rules seem to be set: the matrix that surrounds the pore space is static and rigid, confined fluid or gases move freely inside the pore space and diffuse along pore channels. In my presentation I will demonstrate nanoporous solids that exhibit dynamic features as a response to various stimulations. First, I will introduce soft porous crystals1 for which pore contraction and/or expansion is observed as response to the adsorption of gases and fluids. I will demonstrate molecular design principles for such dynamic porous solids and provide analytical tools that allow to study host-guest interactions in parallel to pore deformation.2, 3 I will present the counterintuitive phenomena of negative gas adsorption as a result of dynamic pore deformation and provide a unique mechanism built on experimental and theoretical methods.4 Secondly, I will introduce a concept that allows to trigger pore deformation by application of a light-stimulation utilizing framework-embedded molecular photo-switches5. When applied in parallel to the adsorption of gases such materials exhibit light-responsive breathing. Finally, I will demonstrate a concept that utilizes responsive dynamic features of molecular machines in an otherwise rigid nanopore space. I will describe the incorporation and operation of unidirectional rotation of light-driven molecular motors in hybrid porous solids and energy transfer mechanism in multifunctional frameworks.6, 7 I will conclude by providing a theoretical perspective on how such confined dynamics can impact, activate, and direct molecular transport properties of the porous host as a function of light stimulation and pore size.8

References:
  1. Krause, S.; Hosono, N.; Kitagawa, S., Chemistry of Soft Porous Crystals: Structural Dynamics and Gas Adsorption Properties. Angewandte Chemie International Edition 2020, 59 (36), 15325-15341.
  2. Krause, S.; Evans, J. D.;  Bon, V.;  Senkovska, I.;  Iacomi, P.;  Kolbe, F.;  Ehrling, S.;  Troschke, E.;  Getzschmann, J.;  Többens, D. M.;  Franz, A.;  Wallacher, D.;  Yot, P. G.;  Maurin, G.;  Brunner, E.;  Llewellyn, P. L.;  Coudert, F.-X.; Kaskel, S., Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks. Nat. Commun. 2019, 10 (1), 3632.
  3. Krause, S.; Evans, J. D.;  Bon, V.;  Senkovska, I.;  Ehrling, S.;  Iacomi, P.;  Többens, D. M.;  Wallacher, D.;  Weiss, M. S.;  Zheng, B.;  Yot, P. G.;  Maurin, G.;  Llewellyn, P. L.;  Coudert, F.-X.; Kaskel, S., Engineering micromechanics of soft porous crystals for negative gas adsorption. Chemical Science 2020, 11 (35), 9468-9479.
  4. Krause, S.; Bon, V.;  Senkovska, I.;  Stoeck, U.;  Wallacher, D.;  Többens, D. M.;  Zander, S.;  Pillai, R. S.;  Maurin, G.;  Coudert, F.-X.; Kaskel, S., A pressure-amplifying framework material with negative gas adsorption transitions. Nature 2016, 532 (7599), 348-352.
  5. S. Krause; J. D. Evans;  V. Bon;  S. Crespi;  W. Danowski;  W. R Browne;  S. Ehrling;  F. Walenszus;  D. Wallacher;  N. Grimm;  D. D. Többens;  M. S. Weiss;  S. Kaskel; Feringa, B. L., Cooperative Light-Induced Breathing of Soft Porous Crystals via Azobenzene Buckling. 10.26434/chemrxiv.13286009.v1 2020.
  6. Danowski, W.; Castiglioni, F.;  Sardjan, A. S.;  Krause, S.;  Pfeifer, L.;  Roke, D.;  Comotti, A.;  Browne, W. R.; Feringa, B. L., Visible-Light-Driven Rotation of Molecular Motors in a Dual-Function Metal–Organic Framework Enabled by Energy Transfer. Journal of the American Chemical Society 2020, 142 (19), 9048-9056.
  7. Stähler, C.; Grunenberg, L.;  Terban, M. W.;  Browne, W. R.;  Doellerer, D.;  Kathan, M.;  Etter, M.;  Lotsch, B. V.;  Feringa, B. L.; Krause, S., Light-driven molecular motors embedded in covalent organic frameworks. Chemical Science 2022, 13 (28), 8253-8264.
  8. Evans, J. D.; Krause, S.; Feringa, B. L., Cooperative and synchronized rotation in motorized porous frameworks: Impact on local and global transport properties of confined fluids. Faraday Discuss. 2021, 225, 286-300
To the top of the page