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Motivation

® | ocal transport properties are required for investigating the dynamics
of Inhomogeneous systems

® (Hydro)dynamic density functional theory needs local viscosities and
diffusion coefficients

State of the art: This work:

Entropy scaling for Entropy Scaling for
transport properties of Inhomogeneous systems
homogeneous systems (e.g. porous systems)
Entropy Scaling

Basic assumption: Univariate relation between reduced transport prop-
erties and reduced residual entropy [3, 4]
Homogeneous systems:

o Ix—=1(s.)=A+Bs.+C(s.)+D(s.)’ [1,2]
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Figure 1: Ehtropy scaling in homogeneous systems.
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Inhomogeneous systems (this work):
® Same correlation, applied locally using s’ (r) = pfr),g)n
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® Determine p(r) such that the equations from homogeneous entropy
scaling remain valid for inhomogeneous systems

Density Functional Theory (DFT)

DFT provides a description of inhomogeneous systems in equilibrium
® Grand potential functional

N
Q)] = FUAON =Y [ pit) (= V(1) ar

® Helmholtz energy functional based on the PC-SAFT EoS [5]
F — Fid.gas 4 Fhard—sphere 4 Fhard—chain 4 Fdisp.

® Equilibrium density from minimizing the grand potential functional
oF

0pi(r)
e |nfluence of solids (e.g. walls) captured by external potential V:*'(r)
® Functionals contain weighted densities with convolution radius 2 R;

pi(r) = / 0i(F)O(20R; — |r — r|)dr

e 3D-DFT or 1D-DFT with free-energy averaged wall potential
— Determine density p(r) and entropy density s,.(r) profiles

wi+ V() =0 Vi

Molecular Dynamics Simulation of Couette Flow

e System: slit pore with atomistic LJ walls ' F

® Rigid walls move due to applied force Fy

e |J fluid in Couette flow

® Molecular dynamics (MD) simulations using
LAMMPS

® Shear pressure assuming a Newtonian fluid

F dv
Txz = ZX — —U(Z)d—zx(z)

=- Velocity v, and viscosity » for validation of
entropy scaling
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Figure 2: DFT results for the inhomogeneous system.

e MD and DFT are consistent regarding the density profile
® Hard sphere contribution has dominating influence on entropy density
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Figure 3: Variation of weighted densities for determining the entropy and viscosity
profiles.

® Entropy profile strongly depends on used (weighted) density
® Viscosities in the bulk-like region agree; trends at walls are captured
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Figure 4: Velocity profiles for a LJ fluid from inhomogeneous

entropy scaling using different densities for reduction and from
MD simulation.

® \elocity can be reproduced by using weighted densities with a large
convolution radius

® \elocity from entropy scaling diverges at the wall

Conclusion and Outlook

® Methodology (case study of Couette flow using DFT and MD) is
suitable for studying inhomogeneous entropy scaling

® | ocal viscosity can be calculated and captures essential trends
® \elocity can be reproduced gquantitatively except close to the wall

Next Steps:
® Adjust the model to achieve correct behavior at the wall
® |[nvestigate Couette flow of LJ fluids in the vapor phase
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