

University of Stuttgart Germany

Institute of Thermodynamics and Thermal Process Engineering Pfaffenwaldring 9, D-70569 Stuttgart, Germany bursik@itt.uni-stuttgart.de

Motivation

- Local transport properties are required for investigating the dynamics of inhomogeneous systems
- (Hydro)dynamic density functional theory needs local viscosities and diffusion coefficients

State of the art:

Entropy scaling for transport properties of homogeneous systems

This work: Entropy Scaling for inhomogeneous systems

Entropy Scaling for Inhomogeneous Systems

B. Bursik **R.** Stierle A. Schlaich J. Gross

Results

(e.g. porous systems)

Entropy Scaling

Basic assumption: Univariate relation between reduced transport properties and reduced residual entropy [3, 4]

Homogeneous systems:

- $\frac{\eta}{\eta^{\text{ref,CE}}} = f(s_{\text{res}}^*) = A + Bs_{\text{res}}^* + C(s_{\text{res}}^*)^2 + D(s_{\text{res}}^*)^3$ [1, 2] • $S_{\text{res}}^* = \frac{S_{\text{res}}}{k_{\text{B}}m}$
- Chapman-Enskog reference $\eta^{\text{ref,CE}} = \frac{5}{16} \frac{\sqrt{Mk_{\text{B}}T/(N_{\text{A}}\pi)}}{\sigma^2 \Omega^{(2,2)^*}}$

Figure 1: Entropy scaling in homogeneous systems.

Inhomogeneous systems (this work):

• Same correlation, applied locally using $s_{res}^*(\mathbf{r}) = \frac{\hat{s}_{res}(\mathbf{r})}{\bar{\rho}(\mathbf{r})k_{\rm B}m}$

z*/-

 $z^{*} / -$

(a) Density profile in comparison to MD simulations.

(b) Entropy density profiles for each Helmholtz energy contribution.

Figure 2: DFT results for the inhomogeneous system.

- MD and DFT are consistent regarding the density profile
- Hard sphere contribution has dominating influence on entropy density

(a) Entropy profile using different (weighted) densities $\bar{\rho}$.

(b) Viscosity profiles from inhomogeneous entropy scaling.

Figure 3: Variation of weighted densities for determining the entropy and viscosity profiles.

- Entropy profile strongly depends on used (weighted) density
- Viscosities in the bulk-like region agree; trends at walls are captured

- Determine $\bar{\rho}(\mathbf{r})$ such that the equations from homogeneous entropy scaling remain valid for inhomogeneous systems

Density Functional Theory (DFT)

DFT provides a description of inhomogeneous systems in equilibrium

• Grand potential functional

$$\Omega\left[\left\{\rho_i(\mathbf{r})\right\}\right] = F\left[\left\{\rho_i(\mathbf{r})\right\}\right] - \sum_{i=1}^N \int \rho_i(\mathbf{r}) \left(\mu_i - V_i^{\text{ext}}(\mathbf{r})\right) \, \mathrm{d}\mathbf{r}$$

- Helmholtz energy functional based on the PC-SAFT EoS [5] $F = F^{id.gas} + F^{hard-sphere} + F^{hard-chain} + F^{disp.}$
- Equilibrium density from minimizing the grand potential functional

$$\frac{\delta F}{\delta \rho_i(\mathbf{r})} - \mu_i + V_i^{\text{ext}}(\mathbf{r}) = \mathbf{0} \qquad \forall i$$

- Influence of solids (e.g. walls) captured by external potential $V_i^{\text{ext}}(\mathbf{r})$
- Functionals contain weighted densities with convolution radius $2\psi R_i$

$$\bar{\rho}_i(\mathbf{r}) = \int \rho_i(\mathbf{r}') \Theta(2\psi R_i - |\mathbf{r} - \mathbf{r}'|) \mathrm{d}\mathbf{r}'$$

• 3D-DFT or 1D-DFT with free-energy averaged wall potential \rightarrow Determine density $\bar{\rho}(\mathbf{r})$ and entropy density $\tilde{s}_{res}(\mathbf{r})$ profiles

Figure 4: Velocity profiles for a LJ fluid from inhomogeneous entropy scaling using different densities for reduction and from MD simulation.

- Velocity can be reproduced by using weighted densities with a large convolution radius
- Velocity from entropy scaling diverges at the wall

Conclusion and Outlook

- Methodology (case study of Couette flow using DFT and MD) is suitable for studying inhomogeneous entropy scaling
- Local viscosity can be calculated and captures essential trends
- Velocity can be reproduced quantitatively except close to the wall **Next Steps:**

Molecular Dynamics Simulation of Couette Flow

- System: slit pore with atomistic LJ walls • Rigid walls move due to applied force F_X
- LJ fluid in Couette flow
- Molecular dynamics (MD) simulations using LAMMPS
- Shear pressure assuming a Newtonian fluid

 $\tau_{xz} = \frac{F_x}{A} = -\eta(z) \frac{\mathrm{d} v_x}{\mathrm{d} z}(z)$

 \Rightarrow Velocity v_x and viscosity η for validation of entropy scaling

 Adjust the model to achieve correct behavior at the wall • Investigate Couette flow of LJ fluids in the vapor phase

Acknowledgements

The authors thank the German Research Foundation (DFG) for financial support through the collaborative research center Interface-Driven Multi-Field Processes in Porous Media–Flow, Transport and Deformation (SFB 1313, Project No. 327 154 368).

References

[1] O. Lötgering-Lin, M. Fischer, M. Hopp, and J. Gross. Ind. Eng. Chem. Res., 57(11):4095–4114, 2018. [2] O. Lötgering-Lin and J. Gross. Ind. Eng. Chem. Res., 54(32):7942–7952, 2015. [3] Y. Rosenfeld. Phys. Rev. A, 15:2545–2549, Jun 1977. [4] Y. Rosenfeld. J. Phys. Condens. Matter, 11(28):5415–5427, jan 1999. [5] E. Sauer and J. Gross. Ind. Eng. Chem. Res., 56(14):4119–4135, 2017.

www.itt.uni-stuttgart.de

